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Summary

This thesis is aimed at the analysis, control and simulation of complex phys-
ical systems from different domains. We use the recently developed frame-
work of port-Hamiltonian systems which formalizes the interconnection struc-
ture of the system through a geometric object called a Dirac structure. It repre-
sents the system dynamics as a generalized Hamiltonian system and provides
powerful tools for analysis and control. In this book we discuss three main
issues, namely interconnections of systems from different physical domains,
control of systems by interconnection, and spatial discretization of infinite-
dimensional port-Hamiltonian systems.

We have studied interconnections of port-Hamiltonian systems by study-
ing the composition of their Dirac structures. Since the interconnection is
power conserving, the interconnected system is energy conserving and can
again be described as a port-Hamiltonian system. We study interconnec-
tions in the case of finite-dimensional systems, as well as interconnections
of infinite-dimensional Dirac structures as appearing in the port-Hamilto-
nian formulation of conservation laws. We also extend these results to study
interconnections of port-Hamiltonian systems with dissipation. Finally we
study the interesting case where we interconnect finite and infinite-dimen-
sional systems. The total interconnection defines again a port-Hamiltonian
system which we call a mixed finite- and infinite-dimensional port-Hamilto-
nian system.

We have derived explicit formulas for the set of achievable Dirac structures
(by composition of a given plant Dirac structure with a to-be-designed con-
troller Dirac structure). This has led to a characterization of the achievable
Casimir functions, and applications towards stabilization have been devel-
oped. Next this theory of achievable Dirac structures and hence the character-
ization of achievable Casimirs has been successfully generalized to infinite-
dimensional systems, and also to the mixed finite-dimensional and infinite-
dimensional case.

An important question, from the control and simulation point of view, is
how to define a discretization procedure for an infinite-dimensional port-
Hamiltonian system that retains the physical structure of the system? We an-
swer this question by presenting a discretization procedure in the port-Ham-
iltonian framework, by defining special approximating objects which serve as
the discrete analogue of various differential forms. We show that the result-

xi



ing finite-dimensional system has port-Hamiltonian structure and it retains
all the physical properties of its infinite-dimensional counterpart.
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Samenvatting

Dit proefschrift behandelt analyse, regeling, en simulatie van complexe sys-
temen uit verscheidende fysische domeinen. We gebruiken het nieuwe for-
malisme van poort-Hamiltonianen, dat de interconnectie-structuur van een
systeem weergeeft als een meetkundig object, bekend als de Diracstructuur.
Hierdoor verwordt de systeemdynamica tot een veralgemeniseerde Hamil-
toniaanse dynamica met krachtige hulpmiddelen voor analyse en regeltech-
niek. In deze thesis behandelen we drie hoofdzaken: de interconnecties van
systemen met verschillende fysische achtergronden, de regeltheorie van sys-
temen met behulp van interconnecties, en de ruimtelijke discretisatie van on-
eindig dimensionale poort-Hamiltoniaanse systemen.

Wij bestudeerden de interconnecties van poort-Hamiltoniaanse systemen
door de samenstelling van hun Diracstructuur. Vanwege het vermogensbe-
houd van de interconnectie, is de energie behouden in het samengestelde, of
interconnecte, systeem, en het geheel kan weer beschreven worden als een
poort-Hamiltoniaans systeem. Beide, de eindig dimensionale en de onein-
dig dimensionale systemen, zijn onderzocht, waarbij de Diracstructuur van
de laatste het resultaat is van de poort-Hamiltoniaanse beschrijving van be-
houdswetten. Verder is de beschrijving uitgebreid tot systemen met energie-
verlies. Als laatste is het interessante geval bestudeerd waar een eindig en een
oneindig systeem aan elkaar verbonden is met een interconnectie. Het geheel
noemen wij een gemengd eindig en oneindig poort-Hamiltoniaans systeem.

Wij hebben vergelijkingen afgeleid voor de verzameling van de realiseerba-
re Diracstructuren (door samenstelling van een gegeven Diracstructuur met
dat van een, te ontwerpen, regelende Diracstructuur). Dat leidde tot een be-
schrijving van realiseerbare Casimirfuncties, met als resultaat methoden voor
stabilisatie. Deze theorie van realiseerbare Diracstructuren en hun realiseer-
bare Casimirfuncties is uitgebreid naar oneindig dimensionale, en gemengd
eindig-oneindig dimensionale gevallen.

Een belangrijke vraag, met betrekking tot het regelen en simuleren, is hoe
een oneindig dimensionaal poort-Hamiltoniaans systeem kan worden gedis-
cretiseerd zodat de fysische eigenschappen behouden blijven? Ons antwoord
is een poort-Hamiltoniaanse discretisatie methode, waarbij speciale objecten
bij benadering de verschillende differentialen kunnen vervangen. Wij heb-
ben laten zien dat het resulterende eindig dimensionale systeem de poort-
Hamiltoniaanse structuur en alle fysische eigenschappen van de oneindig di-

xiii



mensionale tegenhanger behoudt.
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Symbol Description Page

L the Lagrangian 1

F the space of flow variables 13

F∗ the space of effort variables 13

f a flow vector 13

e an effort vector 13

H the Hamiltonian for a finite-dimensional system 2

H the Hamiltonian for an infinite-dimensional system 29

D a Dirac structure 14

DR a Dirac structure with dissipation 77

D∞ an infinite-dimensional Dirac structure 57
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C a Casimir function 72

‖ composition operator for Dirac structures and resistive re-
lations

45
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system

28
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28
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32
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Introduction

”Get the Physics right, rest is Mathematics.” - Rudolph Kalman.

In this thesis we present some results contributing towards analysis and
control of finite and infinite-dimensional port-Hamiltonian systems. We be-
gin with a few results from the literature which would serve as a background
for the rest of the thesis. We also present a couple of examples to make the
reader familiar with the class of systems we deal in this piece of work. A few
concepts or ideas that might appear vague or unexplained will be explained
in the following chapters. Towards the end of this chapter we summarize the
results obtained in the rest of the thesis.

To begin we show how the well known Hamiltonian equations can be gen-
eralized to a class of systems called port-Hamiltonian systems. We also for-
malize the notion of power-conserving interconnections which leads to the
definition of an implicit port-Hamiltonian system.

1.1 From Euler-Lagrange to port-Hamiltonian
systems

For a system with n degrees of freedom the Euler-Lagrange equations are
defined by a Lagrangian function L(q, q̇), where q = (q1, ..., qn) ∈ R

n are the
configuration variables and are given by

d

dt

(
∂L

∂q̇
(q(t), q̇(t))

)

−
∂L

∂q
(q(t), q̇(t)) = τ, (1.1)

where d/dt represents the total time derivative and τ = (τ1, ..., τn)T is the
vector of generalized forces acting on the system. These equations can be
derived as a first order condition of a variational principle. The Lagrangian

1



1 Introduction

L(q, q̇) equals K(q, q̇)−V (q), where K(q, q̇) represents the kinetic energy (co-
energy) of the system and V (q) the potential energy of the system. ∂L

∂q̇
denotes

the column vector of partial derivatives of L(q, q̇) with respect to the general-
ized velocities q̇1, ..., q̇n and similarly for ∂L

∂q
. In standard mechanical systems

the kinetic energy K is of the form

K(q, q̇) =
1

2
q̇T M(q)q̇,

where the n × n inertia (generalized mass) matrix M(q) is symmetric and
positive definite for all q. In this case the vector of generalized momenta p =
(p1, ..., pn)T , defined for any Lagrangian L as p = ∂L

∂q̇
, is simply given by

p = M(q)q̇.

Equation (1.1) is called the Euler-Lagrange equation which describes the equa-
tions of motion of a system. Later what William Rowan Hamilton (1805-1865)
did was to rewrite the second order equation (1.1) into a set of first order
equations using the function H(q, p) obtained by the Legendre transform of
L(q, q̇), defined by

H(q, p) = pT q̇ − L(q, q̇),

where q̇ is expressed as a function of q and p through the equation

p =
∂L

∂q̇
.

It is then easy to see that the Euler Lagrange equation (1.1) can be written as
a set of first order Hamiltonian equations

q̇ = ∂H
∂p

(q(t), p(t)) (= M−1(q(t))p(t))

ṗ = −∂H
∂q

(q(t), p(t)) + τ,

y = ∂H
∂p

(q(t), p(t)).

(1.2)

y denotes the output of the system and is defined such that the product of the
input τ and the output y has dimensions of power. Observe that in the above
equations, apart from them being first-order equations, the Hamiltonian H in
most cases describes the total energy of the system. For a mechanical system,
the Hamiltonian is the sum of the kinetic and the potential energies, H(q, p) =
1
2pT M−1p + V (q). The following energy balance immediately follows from
(1.2)

dH

dt
=

∂T H

∂q
(q, p)q̇ +

∂T H

∂p
(q, p)ṗ

=
∂T H

∂p
(q, p)τ = q̇T τ,

2



1.1 From Euler-Lagrange to port-Hamiltonian systems

expressing that the increase in energy of the system is equal to the supplied
work, which shows conservation of energy. System (1.2) is an example of a
Hamiltonian system with collocated inputs and outputs, which more gener-
ally is given in the following form

q̇ = ∂H
∂p

(q, p), (q, p) = (q1, ..., qn, p1, ..., pn)

ṗ = ∂H
∂q

(q, p) + B(q)u, u ∈ R
m,

y = BT (q)∂H
∂p

(q, p) (= BT (q)q̇), y ∈ R
m,

(1.3)

where B(q) is the input force matrix, with B(q)u denoting the generalized
forces resulting from the control inputs u ∈ R

m. The state space of (1.3) with
local coordinates (q, p) is usually called the phase space. In case m < n we
speak of an underactuated system. If m = k and the matrix B(q) is every-
where invertible, then the Hamiltonian system is called fully actuated. Be-
cause of the form of the output equations y = BT (q)q̇ we again obtain the
energy balance

dH

dt
(q, p) = uT y.

Hence if H is non-negative (or, bounded from below), any Hamiltonian sys-
tem (1.3) is a lossless state space system.

Later in 1992 Bernhard Maschke and Arjan van der Schaft [30] generalized
the class of Hamiltonian system (1.3) into systems (called port-Hamiltonian
systems ) which are described in local coordinates as

ẋ = J(x)∂H
∂x

(x) + g(x)u, x ∈ X , u ∈ R
m

y = gT (x)∂H
∂x

(x), y ∈ R
m.

(1.4)

Here J(x) is an n× n matrix with entries depending smoothly on x, which is
assumed to be skew-symmetric

J(x) = −JT (x), (1.5)

and x ∈ (x1, ..., xn) are local coordinates for an n−dimensional state space
manifold X . Because of (1.5) we get the energy balance

dH

dt
(x(t)) = uT (t)y(t).

This shows that (1.4) is lossless if H ≥ 0. The system (1.4) together with (1.5)
is called a port-Hamiltonian system with structure matrix J(x) and Hamil-
tonian H. Note that (1.3) (and hence (1.2)) is a particular case of (1.4) with
x = (q, p), and J(x) being given by a constant skew-symmetric matrix J =
[

0 In

−In 0

]

and g(q, p) =

[
0

B(q)

]

.
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1 Introduction

1.2 From network modeling to port-Hamiltonian
systems

In the port-based network models of complex physical systems, the overall
system is seen as interconnection of energy-storing elements via basic inter-
connection (balance) laws as Newton’s third law or Kirchhoff’s laws, as well
as power-conserving elements like transformers, kinematic pairs and ideal
constraints, together with energy-dissipating elements. The idea is then to
formalize the basic interconnection laws together with the power-conserving
elements by a geometric structure and to define the Hamiltonian as the total
energy stored in the system.
In order to define power, we start with a finite-dimensional linear space and

its dual. Let F be an l−dimensional linear space and denote its dual (the
space of linear functions on F) by F∗. The product space F × F∗ is consid-
ered to be the space of power variables, with power defined by

P =< f∗ | f >, (f, f∗) ∈ F × F∗,

where < f | f∗ > denotes the duality product, that is the linear function
f∗ ∈ F acting on f ∈ F . Often we call F the space of flows f and F∗ the space
of efforts e, with power of an element (f, e) ∈ F × F∗ denoted as < e | f > .
A Dirac structure can then be defined as a linear subspace D ⊂ F × F∗ such

that D = D⊥ with respect to the symmetric bilinear form defined by

< (f1, e1), (f2, e2) >F×F∗:=< e2 | f1 > + < e1 | f2 > .

Since, for all (f, e) ∈ D, < e | f >= 0, a Dirac structure D defines a power-
conserving relation between the power variables (e, f) ∈ F × F∗. We will
elaborate more on this in Chapter 2.

1.2.1 Physical models

A physical system is described by a set of energy-storing elements, a set of
energy-dissipating or resistive elements, and a set of ports, by which interac-
tion with the environment can take place. These elements are interconnected
to each other by a power-conserving interconnection, see Figure 1.1. We now
present a short description of these elements.
Energy storage elements: A storage element is an element with the property
of storing energy. Typical examples are masses, springs, capacitors or induc-
tors. Every energy storage element is characterized by an input signal u(t),
an output signal y(t), a state variable x(t) and an energy function H(x). The
mathematical model is given by

ẋ = u(t)

y(t) = ∂H
∂x

(x).
(1.6)

4
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Figure 1.1: Implicit port-Hamiltonian system

The above definition of u and y corresponds to a conjugate pair of power
variables as seen in the expression below:

Ḣ =
∂H

∂x
ẋ = yu = Ps,

meaning that the variation of internal energy equals the power Ps supplied
through the port.
Energy dissipating elements: An energy dissipating element models the irre-
versible phenomena of the conversion of (mechanical, electrical, etc.) energy
to thermal one. An energy dissipating element is characterized by a statical
relation between effort and flow variables

e = Z(f) (impedance form) or f = Y (e) (admittance form),

for which the following inequalities have to hold

Z(f)f ≤ 0 or eY (e) ≤ 0.

This implies that
P = ef ≤ 0.

Similarly power-conserving elements like transformers and gyrators can be
added to the conservation laws in order to define the Dirac structure.
Implicit port-Hamiltonian systems: An implicit Hamiltonian system is then
defined as [58],

(−ẋ(t),
∂H

∂x
(x), fR, eR, f, e) ∈ D, (1.7)

where (−ẋ(t), ∂H
∂x

(x)) are the flows and efforts corresponding to the energy-
storing elements, (fR, eR) the flows and efforts corresponding to the energy

5
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Figure 1.2: The series RLC circuit

dissipating elements, (f, e) the ports available for interaction with the envi-
ronment. D is the underlying Dirac structure and H is called the Hamiltonian
function.

Example 1.1. Consider the series RLC circuit as shown in Figure 1.2. The
dynamics are given by the Kirchhoff’s voltage and current laws as follows

up = φ̇ + q
C

+ R φ
L

yp = φ
L

= q̇.

This can be written as a port-Hamiltonian system as follows: The state vari-
ables are x = [q, φ]T , the charge in the capacitor and the flux in the inductor.
R,L and C respectively correspond to the values of the resistor, inductor and
capacitor. The total energy of the system is given by

H =
1

2

(
q2

C
+

φ2

L

)

.

(−q̇,−φ̇) , which represent the current through the capacitor and voltage across
the inductor respectively, are the flow variables corresponding to the energy-

storing elements. Similarly, ( q
C

, φ
L
) which represent the voltage across the

capacitor and the current through the inductor, are the effort variables cor-
responding to the energy-dissipating elements. We can then write the series
RLC circuit as a system of the form (1.4) with dissipation as

[
q̇

φ̇

]

=

[
0 1
−1 −R

][∂H
∂q

= q
C

∂H
∂φ

= φ
L

]

+

[
0
1

]

up

yp =
∂H

∂φ
=

φ

L
.

6



1.3 Interconnection and Control

The terms (f, e) in (1.7) correspond to the port variables, which in this case
are the voltage up and the current yp respectively. Similarly (fR, eR) in (1.7)
respectively correspond to the voltages and current in the resistance. The
Dirac structure in this case corresponds to Kirchhoff’s voltage and current
laws.

1.3 Interconnection and Control

A power-conserving interconnection describes an interconnection between
systems in such a way that there is no gain or loss of energy in the inter-
connection. Since port-Hamiltonian systems include the definition of exter-
nal variables as being power variables, it is natural to consider interconnec-
tions of such systems with other port-Hamiltonian systems. Since the in-
terconnections are power-conserving, the interconnected system is again an
energy-conserving system. It has been shown in [7, 59, 12, 42] that the power-
conserving interconnection of a number of port-Hamiltonian systems is again
a port-Hamiltonian system. The total Dirac structure is then the composition
of the individual Dirac structures and the Hamiltonian of the interconnected
system is the sum of the Hamiltonians of the subsystems. The property of
interconnection of systems is useful when modeling energy-conserving sys-
tems using a modular approach, where the system is thought of as the inter-
connection of a number of subsystems. In Chapter 3 we present a few results
towards interconnections of systems both from the finite and infinite-dimen-
sional domain.

The property of interconnection is also important from the control point
of view of port-Hamiltonian systems, as control can be seen as in a natural
way as interconnection of a (given plant) system with other subsystems (con-
troller systems). Since the plant and the controller systems both have the
port-Hamiltonian structure, the resulting closed-loop system is also a port-
Hamiltonian system. This allows the application of energy-shaping (or pas-
sivity based) methods for control of port-Hamiltonian systems. The idea is to
shape the energy of the system by adding a controller system and also pos-
sibly add damping to ensure asymptotic stability. It has been shown in the
literature [38] that passivity based techniques have been very instrumental
in the control of physical systems, defined as Euler-Lagrange or Hamiltonian
systems and it could thus be expected that this approach is equally powerful
for control of port-Hamiltonian systems.

In this thesis we are interested in the stabilization by Casimir generation,
also called the Energy-Casimir method, of port-Hamiltonian systems. The
key in this method is to use in the Lyapunov analysis next to the Hamiltonian
additional conserved quantities (called Casimirs) which may be present in the
system. Casimirs are functions that are conserved quantities of the system
for every Hamiltonian. If we can find Casimirs for a system then the can-
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didate Lyapunov functions can be sought within the class of combination of
the Hamiltonian H and the corresponding Casimir function. Consider now
the problem of designing a controller port-Hamiltonian system such that the
closed-loop system has the desired stability properties. Suppose we want to
stabilize the plant port-Hamiltonian system around a desired equilibrium x∗.
In case x∗ is not a minimum for HP , the plant Hamiltonian, then a possi-
ble strategy is to generate Casimir functions for the closed-loop system by
choosing an appropriate controller port-Hamiltonian system. We then gen-
erate candidate Lyapunov functions for the closed-loop system as the sum of
the plant and controller Hamiltonian systems and the corresponding Casimir
functions. This strategy is based on finding all the achievable Casimirs of the
closed-loop system. Furthermore, since the closed-loop Casimirs are based
on the closed-loop Dirac structures, the problem reduces to finding all the
achievable closed-loop Dirac structures. Some results in this direction have
been obtained in [7, 42] and in Chapter 4 and 5, we discuss the concepts on
Casimirs and control in more detail.

1.4 Infinite-dimensional port-Hamiltonian systems

The framework of port-Hamiltonian systems has also been extended to infi-
nite-dimensional systems (see [61, 60] for example) such as Maxwell’s equa-
tions incorporating energy radiation though the boundary, the n-dimensional
wave equation, fluid dynamical systems and so on. Hereto a special type
of infinite-dimensional Dirac structure has been introduced, based on the
Stokes’ theorem which is called the Stokes-Dirac structure. Physically, the
Stokes-Dirac structure captures the basic balance laws of the system, like
Faradays and Ampere’s laws or mass balance. The port-Hamiltonian formu-
lation of infinite-dimensional systems is a non-trivial extension of the Ham-
iltonian formulation of partial differential equations by means of [34], since
in the later case it is crucially assumed that the boundary conditions are such
that the energy flow through the boundary of the spatial domain is zero.

Example 1.2. Consider the flow of water through an open-channel canal. The
dynamics are given by the shallow water equations [47]

∂t

[
h
u

]

+

[
u h
g u

]

∂z

[
h
u

]

= 0, (1.8)

with h(z, t) the height of the water level, u(z, t) the water speed and g the
acceleration due to gravity, with z being the spatial variable representing the
length of the canal i.e., z ∈ [0, l]. The first equation expresses the mass-balance
and the second equation comes from the momentum-balance. The total en-
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1.4 Infinite-dimensional port-Hamiltonian systems

ergy (Hamiltonian) is given by

H =
1

2

∫ l

0

[hu2 + gh2]dz. (1.9)

We can write this as an infinite-dimensional port-Hamiltonian system as fol-
lows: The energy variables are the height h(z, t) and the velocity u(z, t). The
energy exchange of the system with the environment takes place through the
boundary {0, l} of the system. The dynamics (1.8) can be written in the form

∂h

∂t
= ∂z(hu) = ∂z(δuH)

∂u

∂t
= ∂z(

1

2
u2 + gh) = ∂z(δhH). (1.10)

The boundary variables are the mass flow hu and the Bernoulli function 1
2u2+

gh evaluated at {0, l}. The system (1.10) is an infinite-dimensional port-Ham-
iltonian system defined with respect to a Stokes-Dirac structure and it satisfies
the energy balance

dH

dt
= (hu)(

1

2
u2 + gh) |l0 .

This means that the change in energy in the spatial domain is equal to the
energy exchanged from the boundary of the system. Observe that hu times
1
2u2 + gh has the dimensions of power. We shall elaborate on this model and
its properties in Chapter 2.

1.4.1 Spatial discretization of infinite-dimensional port -
Hamiltonian systems

Consider a mixed finite and infinite-dimensional port-Hamiltonian system,
where we interconnect finite-dimensional systems to infinite dimensional sys-
tems. Such an interconnection defines again a port-Hamiltonian system, as
will be discussed thoroughly in Chapter 3. A typical example of such a sys-
tem is a power-drive consisting of a power converter, transmission line and
electrical machine. From the control and simulation point of view of such
systems, it may be crucial to approximate the infinite-dimensional subsys-
tem with a finite-dimensional one. The finite-dimensional approximation
should be such that it is again a port-Hamiltonian system which retains all
the properties of the infinite-dimensional model, like energy balance and
other conserved quantities. Furthermore, the port-variables of the approx-
imated system should be such that it can easily be replaced in the original
system, in other words the original interconnection constraints should be re-
tained. It has been shown in [18] how the intrinsic Hamiltonian formulation
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suggests finite element methods which result in finite-dimensional approxi-
mations which are again port-Hamiltonian systems. Given the port-Hamilto-
nian formulation of distributed parameter systems it is natural to use different
finite-elements for the approximation of functions and forms. In [18] this
method was used for discretization of the ideal transmission line and the two
dimensional wave equation. In Chapter 6 we apply these methods for spatial
discretization of the shallow water equations.

1.5 Outline of the thesis

• In Chapter 2 we start with an introduction to the concepts of Dirac
structures and port-Hamiltonian systems. We present, from the liter-
ature, some basic results on various representations of Dirac structures
and port-Hamiltonian systems. We also state how the concepts of Dirac
structures and port-Hamiltonian systems can be extended to infinite-
dimensional systems in order the incorporate energy flow though the
boundary. The port-Hamiltonian models of the shallow water equa-
tions are based on the results obtained in [46].

• Chapter 3 focuses on power-conserving interconnections of port-Ham-
iltonian systems by studying compositions of their Dirac structures.
Since the interconnection preserves the power in the system, the result-
ing system is again energy-conserving. It is then shown that the re-
sulting system can also be described as a port-Hamiltonian system. We
study composition of finite-dimensional Dirac structures with finite-di-
mensional Dirac structures and composition of Dirac structures with
resistive relations. The composition of Dirac structures with resistive
relations enables us to study interconnections of various port-Hamilto-
nians systems with dissipation. The results are extended also to the in-
finite-dimensional case, where we study composition of infinite-dimen-
sional Dirac structures with or without dissipation. This composition
could either be through the spatial domain or through the boundary of
the infinite-dimensional Dirac structure. Finally, we study interconnec-
tions of systems which are mixed in nature, that is composition of finite-
dimensional Dirac structure with infinite-dimensional Dirac structures.
In particular we study two cases, 1) Interconnections of two finite-di-
mensional systems via an infinite-dimensional system and 2) Intercon-
nection of two infinite-dimensional systems via a distributed finite-di-
mensional system. The results in this chapter are based on the papers
[42, 43].

• Chapter 4 uses the results on interconnections for further analysis of
port-Hamiltonian systems. We investigate, which closed-loop port-Ham-
iltonian systems can be achieved by interconnecting a given plant port-
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Hamiltonian system P with a to-be-designed controller port-Hamilto-
nian system C. We also characterize the set of achievable Casimirs for
the closed-loop systems and study its implications on control of port-
Hamiltonian systems. We also focus on the role of energy dissipation
and in the case of finite-dimensional systems with dissipation we see
how under certain conditions, if a function is a Casimir for a given re-
sistive relation, it is a Casimir for all resistive relations. The results of
this chapter have also been presented in [42, 43].

• In Chapter 5 we use results obtained on achievable Casimirs in Chapter
4 for control of port-Hamiltonian systems. In particular we are inter-
ested in the problem of set point regulation. We use the Casimirs in the
extended state-space to generate Lyapunov functions of the closed-loop
system as the sum of the plant and the controller Hamiltonians and the
corresponding Casimir function. We also see, how with the help of new
passive outputs we can study stability of forced port-Hamiltonian sys-
tems with dissipation.
In the case of control of infinite-dimensional port-Hamiltonian systems,
we consider the problem of stabilization (by generating Casimir func-
tions in the extended state space) in the case where the plant system, to
be controlled, consists of an infinite-dimensional subsystem. We study
asymptotic stability of infinite-dimensional systems by injecting damp-
ing through the boundary of the system. We also explore the possibil-
ity of extending this control techniques to control of fluid dynamical
systems. We present some preliminary results with applications to the
shallow water equations. The material in this chapter is based on the
papers [44, 16, 26].

• Chapter 6 deals with spatial discretization of the one dimensional shal-
low water equations, which are modeled as infinite-dimensional port-
Hamiltonian systems defined with respect to a Stokes-Dirac structure.
We use the idea presented in [18] of using mixed finite elements for dis-
cretizing different types of differential forms. We present some prelimi-
nary numerical results and also present a simple extension to the case of
spatial discretization of non-constant Stokes-Dirac structure. This chap-
ter is primarily based on the papers [41, 45].
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2

Port-Hamiltonian Systems

”Equations are just the boring part of mathematics. I attempt to see
things in terms of geometry.” - Stephen Hawking.

In the previous chapter we have given a brief introduction on how network
modeling of physical systems, both finite and infinite-dimensional, leads to
port-Hamiltonian systems. Port-Hamiltonian systems are described by a ge-
ometric object called the Dirac structure which captures the interconnection
structure and the physical laws of the system. A Dirac structure generalizes
the notions of symplectic and Poisson structures. We also stated that this
framework can be extended to model infinite-dimensional systems incorpo-
rating boundary energy flow.

In this chapter we discuss concepts in detail. To begin with, we recall the
definition of a Dirac structure and show it can be used to define a port-Ham-
iltonian system and discuss various representations of Dirac structures and
port-Hamiltonian systems. We also state the definition of an infinite-dimen-
sional port-Hamiltonian system defined with respect to an infinite-dimen-
sional Dirac structure called the Stokes-Dirac structure. Towards the end we
present a few examples which we use in the rest of the thesis.

2.1 Port-Hamiltonian systems and Dirac structures

2.1.1 Dirac structures

To define the notion of Dirac structures for finite dimensional systems, we
start with a space of power variables F × F∗. We call F the space of flows
whose elements are denoted by f ∈ F and are called flow vectors. The space
of efforts is given by the dual linear space E := F∗ , and its elements are
denoted by e ∈ E . The total space of flow and effort variables is F × F∗ and
will be called the space of port variables. On this space of port variables, we
define the power by

P =< e | f >, (f, e) ∈ F × F∗,
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2 Port-Hamiltonian Systems

where < e | f > denotes the duality product, that is, the linear functional
e ∈ F∗ acting on f ∈ F .

Definition 2.1. [58] A Dirac structure on F × F∗ is a subspace

D ⊂ F ×F∗,

such that
(i) < e | f >= 0, for all (f, e) ∈ D and
(ii) dimD = dimF .

Property (i) corresponds to power conservation and expresses the fact that
the total power entering (or leaving) the Dirac structure is zero. It can be
shown that the maximal dimension of any subspace D ⊂ F ×F∗ satisfying
property (i) is equal to dimF . Instead of proving this directly, we will give
an equivalent definition of a Dirac structure from which the claim immedi-
ately follows. Furthermore, this equivalent definition of a Dirac structure has
the advantage that it generalizes to the case of an infinite-dimensional linear
space F , leading to the definition of an infinite-dimensional Dirac structure.
This is instrumental in the definition of a distributed-parameter port-Hamil-
tonian system as will be seen in Section 2.3.

In order to give this equivalent characterization of a Dirac structure, we
look more closely at the geometric structure of the total space of flow and
effort variables F × F∗. In fact, related to the definition of power, there exists
a canonically defined bilinear form �,� on the space F × F∗, defined as

� (fa, ea), (f b, eb) � :=< ea | f b > + < eb | fa >, (2.1)

(fa, ea), (f b, eb) ∈ F × F∗.

Note that this bilinear form is indefinite, that is, � (f, e), (f, e) � may be
positive or negative, but it is non-degenerate, that is, � (fa, ea), (f b, eb) �= 0
for all (f b, eb) implies that (fa, ea) = 0.

Proposition 2.2. [58] A constant Dirac structure on F × F∗ is a subspace

D ⊂ F ×F∗,

such that
D = D⊥, (2.2)

where ⊥ denotes the orthogonal complement with respect to the bilinear form �,� .

Proof. Let D satisfy (2.2). Then for every (f, e) ∈ D

0 =� (f, e), (f, e) �

=< e | f > + < e | f >

= 2 < e | f > .
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2.1 Port-Hamiltonian systems and Dirac structures

By non-degeneracy of �,� dimD⊥ = dim(F×F∗)−dimD = 2 dimF−dimD
and hence property (2.2) implies that dimD = dimF .

Conversely, let D be a Dirac structure and thus satisfying properties (i) and
(ii) of Definition 2.1. Let (fa, ea), (f b, eb) be any vectors contained in D. Then
by linearity (fa + f b, ea + eb) ∈ D. Hence by property (i)

0 =< ea + eb | fa + f b >

=< ea | f b > + < eb | fa > + < ea | fa > + < eb | f b >

=< ea | f b > + < eb | fa >=� (fa, ea), (f b, eb) �,

since by application of property (i) < ea | fa >=< eb | f b >= 0. This implies
that

D ⊂ D⊥.

Furthermore, by property (ii) and dimD⊥ = 2 dimF − dimD it follows that

dimD = dimD⊥,

yielding D = D⊥.

Remark 2.3. Note that we have actually shown that property (i) implies D ⊂
D⊥. Together with the fact that dimD⊥ = dimD = 2 dimF − dimD it
implies that any subspace D satisfying property (i) has the property that
dimD ≤ dimF . Thus as claimed before, a Dirac structure is a linear subspace
of maximal dimension satisfying property (i).

Example 2.4. Let F be a linear space over R. Let E be given as F∗ (the space
of linear functionals on F ), with pairing <|> and the duality product < e |
f >∈ R.

1. Let J : E → F be a skew-symmetric map. Then the graph J ⊂ F × E is
a Dirac structure.

2. Let ω : F → E be a skew-symmetric map. Then the graph ω ⊂ F × E is
a Dirac structure.

3. Let V ⊂ F be a finite-dimensional linear subspace. Then V × V orth ⊂
F ×E is a Dirac structure, where V orth ⊂ E is the annihilating subspace
of V . The same holds if F is a topological vector space, E is the space of
linear continuous functionals on F , and V is a closed subspace of F .

Example 2.5 (Kirchhoff’s laws as Dirac structures). Consider an electrical
circuit with n−edges where the current through the i−th edge is denoted by
Ii and the voltage over the i−th edge is Vi. Collect the currents in a single col-
umn vector I (of dimension n) and the voltages in an n−dimensional column
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vector V. The following consequence of Kirchhoff’s current and voltage laws
is well-known. Let Kirchhoff’s current laws be written in matrix form as

AI = 0, (2.3)

for some matrix A (with n columns). Then Kirchhoff’s voltage laws can be
written in the following form. All allowed vectors of voltages V in the circuit
are given as

V = AT λ, (2.4)

for any vector λ of appropriate dimension. It is immediately seen that the to-
tal space of currents and voltages allowed by Kirchhoff’s current and voltage
laws

D := {(I, V ) | AI = 0, V = AT λ},

defines a Dirac structure. Consequently

(V a)T Ib + (V b)T Ia = 0,

for all pairs (Ia, V a), (Ib, V b) ∈ D. In particular, by taking V a, Ib equal to zero,
we obtain

(V b)T Ia = 0,

for all Ia satisfying (2.3) and all V b satisfying (2.4). This is nothing else than
Tellegen’s theorem.

Example 2.6. A Transformer can easily be seen as an example of a Dirac struc-
ture. A transformer is a two-port linking the flow and effort variables (f1, e1)
and (f2, e2) by

f2 = αf1

e1 = −αe2, (2.5)

with α being a constant, called the transformer ratio. The subspace defined
by (2.5) is easily checked to be a Dirac structure.

2.1.2 Port-Hamiltonian systems

In general, a port-Hamiltonian system can be represented as in Figure 2.1.
Central in the definition of a port-Hamiltonian system is the notion of a Dirac
structure, depicted in Figure 2.1 by D. Basic property of any Dirac structure is
power conservation: the Dirac structure links the various port variables in such
a way that the total power associated with the port-variables is zero.

The port variables entering the Dirac structure have been split in Figure
2.1 in different parts. First, there are two internal ports. One, denoted by S,
is corresponding to energy-storage and the other one, denoted by R, is cor-
responding to internal energy-dissipation (resistive elements). Second, two
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S

R

C

I

D

Figure 2.1: port-Hamiltonian system.

external ports are distinguished. The external port denoted by C is the port
that is accessible for controller action. Also the presence of sources may be
included in this port. Finally, the external port denoted by I is the interaction
port, defining the interaction of the system with (the rest of) its environment.

Energy storage port

The port variables associated with the internal storage port will be denoted by
(fS , eS). They are interconnected to the energy storage of the system which
is defined by a finite-dimensional state space manifold X with coordinates
x, together with a Hamiltonian function H : X → R denoting the energy.
The flow variables of the energy storage are given by the rate ẋ of the energy
variables x. Furthermore, the effort variables of the energy storage are given
by the co-energy variables ∂H

∂x
(x), resulting in the energy balance

d

dt
H =<

∂H

∂x
(x) | ẋ >=

∂T H

∂x
(x)ẋ. (2.6)

(Here we adopt the convention that ∂H
∂x

(x) denotes the column vector of par-
tial derivatives of H .)

The interconnection of the energy storing elements to the storage port of
the Dirac structure is accomplished by setting

fS = −ẋ
eS = ∂H

∂x
(x).

(2.7)

Hence the energy balance (2.6) can be also written as

d

dt
H =

∂T H

∂x
(x)ẋ = −eT

SfS . (2.8)
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Resistive port

The second internal port corresponds to internal energy dissipation (due to
friction, resistance, etc.), and its port variables are denoted by (fR, eR). These
port variables are terminated on a static resistive relation R. In general, a
static resistive relation will be of the form

R(fR, eR) = 0, (2.9)

with the property that for all (fR, eR) satisfying (2.9)

< eR | fR >≤ 0. (2.10)

In many cases we may restrict ourselves to linear resistive relations. (Note that
some nonlinearities can be captured in the description of the resistive port
of the Dirac structure.) This means that the resistive port variables (fR, eR)
satisfy linear relations of the form

RffR + ReeR = 0. (2.11)

The inequality (2.10) corresponds to the square matrices Rf and Re satisfying
the properties of symmetry and semi-positive definiteness

RfRT
e = ReR

T
f ≥ 0, (2.12)

together with the dimensionality condition

rank [Rf |Re] = dim fR. (2.13)

Indeed, by the dimensionality condition (2.13) and the symmetry (2.12) we
can equivalently rewrite the kernel representation (2.11) of R into an image
representation

fR = RT
e λ

eR = −RT
f λ.

(2.14)

That is, any pair (fR, eR) satisfying (2.11) can be written into the form (2.14)
for a certain λ, and conversely any (fR, eR) for which there exists λ such that
(2.14) holds is satisfying (2.11).

Hence by (2.12) for all fR, eR satisfying the resistive relation

eT
RfR = −(RT

f λ)T RT
e λ = −λT RfRT

e λ ≤ 0. (2.15)

Without the presence of additional external ports, the Dirac structure of the
port-Hamiltonian system satisfies the power-balance

eT
SfS + eT

RfR = 0, (2.16)
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which leads by substitution of the equations (2.8) and (2.15) to

d

dt
H = −eT

SfS = eT
RfR ≤ 0. (2.17)

An important special case of resistive relations between fR and eR occurs
when the resistive relations can be expressed as an input-output mapping

fR = −F (eR), (2.18)

where the resistive characteristic F : R
mr → R

mr satisfies

eT
RF (eR) ≥ 0, eR ∈ R

mr . (2.19)

In many cases, F will be derivable from a so-called Rayleigh dissipation function
R : R

mr → R in the sense that F (eR) = ∂R
∂eR

(eR).) For linear resistive elements,
(2.18) specializes to

fR = −R̃eR, (2.20)

for some positive semi-definite symmetric matrix R̃ = R̃T ≥ 0.

Remark 2.7. The idea of using the notation in (2.10) can be explained as fol-
lows: A port-Hamiltonian system with dissipation is obtained as a composi-
tion of a Dirac structureD with a resistive relation R, with (fS , eS, fR, eR) ∈ D
and (f̃R, ẽR) ∈ R. The elements in R are such that < ẽR | f̃R >≥ 0, indicating
a positive power towards the element, and the resistive relation is connected
to the Dirac structure via the following interconnection constraints

fR = −f̃R, eR = ẽR.

Hence the flow and effort variables corresponding to the resistive ports of the
Dirac structure satisfy

< eR | fR >= − < ẽR | f̃R >≤ 0.

We study the composition of Dirac structures and resistive relations in Chap-
ter 3, and see how this composition can be used to define a port-Hamiltonian
system with dissipation.

External ports

Now, let us consider in more detail the external ports of the system. We shall
distinguish between two types of external ports. One is the control port C,
with port variables (fC , eC), which are the port variables which are acces-
sible for controller action. The other type of external port is the interaction
port I, which denotes the interaction of the port-Hamiltonian system with
its environment. The port variables corresponding to the interaction port are
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denoted by (fI , eI). Taking both the external ports into account the power-
balance (2.16) extends to

eT
SfS + eT

RfR + eT
CfC + eT

I fI = 0, (2.21)

whereby (2.17) extends to

d

dt
H = eT

RfR + eT
CfC + eT

I fI . (2.22)

Port-Hamiltonian dynamics

The port-Hamiltonian system with state spaceX , Hamiltonian H correspond-
ing to the energy storage port S, resistive port R, control port C, intercon-
nection port I, and total Dirac structure D will be succinctly denoted by
Σ = (X , H,R, C, I,D). The dynamics of the port-Hamiltonian system are
specified by considering the constraints on the various port variables im-
posed by the Dirac structure, that is,

(fS , eS, fR, eR, fC , eC , fI , eI) ∈ D,

and to substitute in these relations the equalities fS = −ẋ, eS = ∂H
∂x

(x). This
leads to the implicitly defined dynamics

(−ẋ(t),
∂H

∂x
(x(t)), fR(t), eR(t), fC , (t), eC(t), fI(t), eI(t)) ∈ D, (2.23)

with fR(t), eR(t) satisfying for all t the resistive relation

RffR(t) + ReeR(t) = 0. (2.24)

In many cases of practical interest, the dynamics (2.23) will constrain the al-
lowed states x, depending on the values of the external port variables (fC , eC)
and (fI , eI). Thus in an equational representation (as will be treated in de-
tail in the next section), port-Hamiltonian systems generally will consist of a
mixed set of differential and algebraic equations (DAEs).

2.1.3 Input-state-output port-Hamiltonian systems

An important special case of port-Hamiltonian systems as defined above is
the class of input-state-output port-Hamiltonian systems, where there are no al-
gebraic constraints on the state space variables, and the flow and effort vari-
ables of the resistive, control and interaction port are split into conjugated
input-output pairs. (Note that the absence of algebraic constraints on the
state variables can be alternatively formulated by requiring that the effort
variables at the energy-storage port, which are given as the components of
the gradient of the Hamiltonian, are input variables.)
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Input-state-output port-Hamiltonian systems (without feedthrough terms)
are of the form

Σ :

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u + k(x)d

y = gT (x)∂H
∂x

(x)

z = kT (x)∂H
∂x

(x)

x ∈ X , (2.25)

where (u, y) are the input-output pairs corresponding to the control port C,
while (d, z) denote the input-output pairs of the interaction port I. Here the
matrix J(x) is skew-symmetric, that is J(x) = −JT (x). The matrix R(x) =
RT (x) ≥ 0 specifies the resistive relation. From a resistive port point of view,

it is given as R(x) = gT
R(x)R̃gR(x) for some linear resistive relation fR =

−R̃eR, R̃ = R̃T ≥ 0, with gR representing the input matrix corresponding to
the resistive port. The underlying Dirac structure of the system is then given
by the graph of the skew-symmetric linear map







−J(x) −gR(x) −g(x) −k(x)
gT

R(x) 0 0 0
gT (x) 0 0 0
kT (x) 0 0 0







. (2.26)

Note that yT u and zT d equal the power corresponding to the control, respec-
tively, interaction port. In general, the Dirac structure defined as the graph of
the mapping (2.26) is a modulated Dirac structure since the matrices J, gR, g, k
may all depend on the energy variables x.

By allowing extra non-zero terms in the skew-symmetric map (2.26), a more
general form of input-state-output port-Hamiltonian systems than (2.25) is
obtained, including in particular feedthrough terms. For further details we
refer to [14, 58].

Example 2.8 ( LC-circuit with independent storage elements ). Consider a
controlled LC-circuit (see Figure 2.2) consisting of two inductors with mag-
netic energies H1(ϕ1) and H2(ϕ2) (ϕ1 and ϕ2 being the magnetic flux link-
ages), and a capacitor with electric energy H3(Q) (Q being the charge). If the
elements are linear, then H1(ϕ1) = 1

2L1
ϕ2

1, H2(ϕ2) = 1
2L2

ϕ2
2, and H3(Q) =

1
2C

Q2. Furthermore, let V = u denote a voltage source. Using Kirchhoff’s
laws, one immediately arrives at the input-state-output port-Hamiltonian sys-
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2 Port-Hamiltonian Systems
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Figure 2.2: Controlled LC-circuit

tem





Q̇
ϕ̇1

ϕ̇2



 =





0 1 −1
−1 0 0
1 0 0





︸ ︷︷ ︸

J







∂H
∂Q

∂H
∂ϕ1

∂H
∂ϕ2







+





0
1
0



u (2.27)

y =
∂H

∂ϕ1
(= current through first inductor),

with H(Q, ϕ1, ϕ2) := H1(ϕ1) + H2(ϕ2) + H3(Q) the total energy. Clearly the
matrix J is skew-symmetric.

Example 2.9. Consider the capacitor microphone as in Figure 2.3. Here the
capacitance C(q) is varying as a function of the displacement q of the right
plate (with mass m), which is attached to a spring (with spring constant
k > 0) and a damper (with constant c > 0) and affected by a mechanical
force F (air pressure arising from sound). Furthermore, E is a voltage source.
The dynamical equations of motion can be written as the port-Hamiltonian
system with dissipation





q̇
ṗ

Q̇



 =





0 1 0
−1 −c 0
0 0 −1/R










∂H
∂q
∂H
∂p
∂H
∂Q




+





0 0
1 0
0 1/R





[
F
E

]

[
y1

y2

]

=

[
∂H
∂p

= q̇
1
R

∂H
∂Q

= I

]

.

with p the momentum, R the resistance of the resistor, I the current through
the voltage source and the Hamiltonian given by

H(q, p, Q) =
1

2m
p2 +

1

2
k(q − q̃)2 +

q

2Aε
Q2,
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�

� �

�

Figure 2.3: Capacitor microphone

where A is the plate area and ε the permittivity in the gap. Note that F q̇ is the
mechanical power and EI the electrical power applied to the system. In the
application as a microphone the voltage over the resistor will be used (after
amplification) as a measure for the mechanical force F.

2.2 Representations of Dirac structures and port-
Hamiltonian systems

In the preceding section, we have provided the geometric definition of a port-
Hamiltonian system containing three main ingredients. First, the energy stor-
age which is represented by a state space manifold X specifying the space of
energy variables together with a Hamiltonian H : X → R defining the energy.
Secondly, there are the static resistive elements, and thirdly there is the Dirac
structure linking all the flows and efforts associated to the energy storage, re-
sistive elements, and the external ports (e.g. control and interaction ports) in
a power-conserving manner. This leads to a definition of a port-Hamiltonian
system that is coordinate-free because of three reasons: (a) we do not start with
coordinates for the state space manifold X , (b) we define the Dirac structure
as a subspace instead of a set of equations, (c) also the resistive relations are
defined as a subspace constraining the port variables fR, eR.

This geometric, coordinate-free, point of view has a number of advantages.
It allows one to reason about port-Hamiltonian systems without the need
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2 Port-Hamiltonian Systems

to choose specific representations. In the coming chapters we will see that
a number of properties of the port-Hamiltonian system, such as passivity
and existence of conserved quantities, can be analyzed without the need for
choosing coordinates and equations.

On the other hand, for many purposes, e.g. simulation, the need for an
equational representation of the port-Hamiltonian system is indispensable.
Then the emphasis shifts to finding the most convenient equational repre-
sentation for the purpose at hand. In this section, we will briefly discuss a
number of possible representations of port-Hamiltonian systems. It will turn
out that the key issue is the representation of the Dirac structure.

2.2.1 Representations of Dirac structures

Dirac structures admit different representations. Here we just list a number of
them; see [6, 10, 58] for more information.

1. (Kernel and Image representation) Every Dirac structure D ⊂ F × F∗ can
be represented in kernel representation as

D = {(f, e) ∈ F × F∗ | Ff + Ee = 0}, (2.28)

for linear maps F : F → V and E : F∗ → V satisfying

(i) EF ∗ + FE∗ = 0,

(ii) rank(F + E) = dimF ,
(2.29)

where V is a linear space with the same dimension as F , and where
F ∗ : V∗ → F∗ and E∗ : V∗ → F∗∗ = F are the adjoint maps of F and
E, respectively.

It follows from (2.29) that D can be also written in image representation
as

D = {(f, e) ∈ F × F∗ | f = E∗λ, e = F ∗λ, λ ∈ V∗}. (2.30)

Sometimes it will be useful to relax this choice of the linear mappings F
and E by allowing V to be a linear space of dimension greater than the
dimension of F . In this case we shall speak of relaxed kernel and image
representations.

Matrix kernel and image representations are obtained by choosing lin-
ear coordinates for F , F∗ and V . Indeed, take any basis f1, · · · , fn for
F and the dual basis e1 = f∗

1 , · · · , en = f∗
n for F∗, where dim F = n.

Furthermore, take any set of linear coordinates for V . Then the linear
maps F and E are represented by n × n matrices F and E satisfying

(i) EFT + FET = 0,

(ii) rank [F | E] = dimF .
(2.31)
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2.2 Representations of Dirac structures and port-Hamiltonian systems

In the case of a relaxed kernel and image representation F and E will
be n′ × n matrices with n′ > n.

2. (Constrained input-output representation) Every Dirac structure D ⊂ F ×
F∗ can be represented as

D = {(f, e) ∈ F × F∗ | f = Je + Gλ, GT e = 0}, (2.32)

for a skew-symmetric mapping J : F → F∗ and a linear mapping G
such that im G = {f | (f, 0) ∈ D}. Furthermore, kerJ = {e | (0, e) ∈ D}.

3. (Hybrid input-output representation) [6]. Let D be given in matrix kernel
representation by square matrices E and F as in (2.28). Suppose rank
F = m(≤ n). Select m independent columns of F , and group them

into a matrix F1. Write (possibly after permutations) F = [F1

...F2], and

correspondingly E = [E1

...E2], f =

[
f1

f2

]

, e =

[
e1

e2

]

. Then the matrix

[F1

...E2] is invertible, and

D =

{[
f1

f2

]

,

[
e1

e2

] ∣
∣
∣
∣

[
f1

e2

]

= J

[
e1

f2

]}

, (2.33)

with J := −[F1

...E2]
−1[F2

...E1] skew-symmetric.

4. (Canonical coordinate representation) [10]. There exists a basis for F and
dual basis for F∗, such that, in these bases, the vector (f, e), when par-
titioned as (fq, fp, fr, fs, eq, ep, er, es), is in D if and only if







fq = −ep, fp = eq

fs = 0, es = 0
. (2.34)

Remark 2.10. A special type of kernel representation occurs if not only EF ∗+
FE∗ = 0 but in fact FE∗ = 0 (while still rank(F + E) = dimF ). In this case
it follows that kerF = imE∗, and the Dirac structure is the product of the

subspace kerF ⊂ F and the subspace kerForth = kerE ⊂ F∗.

In [12, 6] it is shown how one may convert any of the above representa-
tions into any other. A particular transformation that will be used in the se-
quel is the direct transformation of the constrained input-output representation
into the kernel representation. Consider the Dirac structure D given in con-
strained input-output representation by (2.32). Construct a linear mapping
G⊥ of maximal rank satisfying

G⊥G = 0.
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2 Port-Hamiltonian Systems

Then, premultiplying the first equation of (2.32) by G⊥, one eliminates the
Lagrange multipliers λ and obtains

D = {(f, e) ∈ F × F∗ | G⊥f = G⊥Je, GT e = 0}, (2.35)

which is easily seen to define a kernel representation.

2.2.2 Representations of port-Hamiltonian systems

Equational representations of the port-Hamiltonian system (2.23) are obtained
by choosing a specific equational representation of the Dirac structure D. For
example, if D is given in matrix kernel representation

D = {(fS, eS , f, e) ∈ X ×X ∗×F ×F∗ | FSfS +ESeS +Ff +Ee = 0}, (2.36)

with
(i) ESFT

S + FSET
S + EFT + FET = 0,

(ii) rank [FS

...ES

...F
...E] = dim(X × F),

(2.37)

then the port-Hamiltonian system is given by the set of equations

FS ẋ(t) = ES

∂H

∂x
(x(t)) + Ff(t) + Ee(t). (2.38)

Note that, in general, (2.38) consists of differential equations and algebraic
equations in the state variables x (DAEs), together with equations relating
the state variables and their time-derivatives to the external port variables
(f, e).

Passivity of port-Hamiltonian systems

By the power-conserving property of a Dirac structure it follows that any
implicit port-Hamiltonian system satisfies the energy balance

dH

dt
(x(t)) =<

∂H

∂x
(x(t) | ẋ(t) >= eT

c fc + eT
I fI .

This implies that any port-Hamiltonian system is passive with respect to the
supply rate eT

c fc + eT
I fI and storage function H if H qualifies as a storage

function, that is H is semi-positive definite (H ≥ 0 for all x).

2.3 Infinite-dimensional port-Hamiltonian systems

In order to extend the Hamiltonian formulation to infinite-dimensional sys-
tems, for example as in [34], a fundamental difficulty arises in the treatment
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2.3 Infinite-dimensional port-Hamiltonian systems

of boundary conditions. The treatment of infinite-dimensional Hamiltonian
systems in the literature seems mostly focused on systems with infinite spa-
tial domain, where the variables go to zero for spatial variables tending to
infinity, or on systems with boundary conditions such that the energy ex-
change through the boundary is zero. On the other hand, from a control and
interconnection point of view it is essential to be able to describe an infinite-
dimensional system with varying boundary conditions including energy ex-
change through the boundary, since in many applications, interaction with
the environment takes place through the boundary of the system. Clear ex-
amples are telegraphers equations (describing the dynamics of a transmission
line), where the boundary of the system is described by the behavior of the
voltages and currents at both ends of the transmission line. In such examples
it is obvious that in general the boundary exchange of power will be non-zero
and that in fact one would like to consider the voltages and currents as addi-
tional boundary variables of the system, which can be interconnected to other
systems.

From a mathematical point of view, it is not obvious how to incorporate
non-zero energy flow through the boundary, using, for example the Poisson
framework for Hamiltonian systems. For example, the Korteweg-de Vries
equation a Poisson bracket can be formulated (for zero boundary conditions)
with the use of the differential operator d/dz as follows:
Consider the Korteweg-de Vries equation:

ut = uzzz + uuz.

Then

ut =
d

dz
(uzz +

1

2
u2) = DδH,

where D = d
dz

and

H(u) =

∫

[−
1

2
u2

z +
1

6
u3]dz.

D is skew-symmetric, i.e. D = −D
∗ for zero boundary conditions, and hence

it can be shown that it defines a Poisson bracket, see [34] for details.
However for boundary conditions corresponding to non-zero energy flow

the differential operator is not skew-symmetric anymore. Indeed, by simple
integration by parts

∫

Z

g
∂f

∂z
dz = −

∫

Z

f
∂g

∂z
dz + fg |Z .

Hence d
dz

is a skew-symmetric operator only if either of the following condi-
tions are true

1. The spatial domain is infinite, and the product fg can be considered to
be zero at infinity.
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2 Port-Hamiltonian Systems

2. The spatial domain is finite and the product fg is zero on the boundary.

Hence the Poisson framework cannot be directly used to model systems
with non-zero boundary conditions

To overcome this problem a framework has been provided in [61], by in-
troducing a special type of infinite-dimensional Dirac structure, based on the
Stokes’ theorem. We briefly highlight those results here with a few examples.

Let Z be an n−dimensional smooth manifold with a smooth (n − 1) di-
mensional boundary ∂Z, representing the space of spatial variables. De-
note by Ωk(Z), k = 0, 1, ..., n, the space of exterior k−forms on Z , and by
Ωk(∂Z), k = 0, 1, ..., n − 1, the space of k−forms on ∂Z . (Note that Ω0(Z)
respectively Ω0(∂Z), is the space of smooth functions on Z, respectively ∂Z.)
Clearly, Ωk(Z) and Ωk(∂Z) are (infinite-dimensional) linear spaces (over R).
Furthermore there is a natural pairing between Ωk(Z) and Ωn−k(Z) given by

< β | α >:=

∫

Z

β ∧ α, (∈ R), (2.39)

with α ∈ Ωk(Z), β ∈ Ωn−k(Z), where ∧ is the usual wedge product of dif-
ferential forms yielding the n−form β ∧ α. In fact, the pairing (2.39) is non-
degenerate in the sense that if < β | α >= 0 for all α, respectively, for all β,
then β = 0, respectively, α = 0.

Similarly, there is a pairing between Ωk(∂Z) and Ωn−1−k(∂Z) given by

< β | α >:=

∫

∂Z

β ∧ α, (∈ R), (2.40)

with α ∈ Ωk(Z), β ∈ Ωn−1−k(Z). Now let us define the linear space

Fp,q := Ωp(Z) × Ωq(Z) × Ωn−p(∂Z), (2.41)

for any pair p, q of positive integers satisfying

p + q = n + 1, (2.42)

and correspondingly let us define

Ep,q := Ωn−p(Z) × Ωn−q(Z) × Ωn−q(∂Z). (2.43)

Then the pairing (2.39) and (2.40) yields a (non-degenerate) pairing between
Fp,q and Ep,q. As in the finite-dimensional case, symmetrization of this pairing
yields the following bilinear form on Fp,q × Ep,q with values in R :

� (f1
p , f1

q , f1
b , e1

p, e
1
q, e

1
b), (f

2
p , f2

q , f2
b , e2

p, e
2
q, e

2
b) �

:=
∫

Z
[e1

p ∧ f2
p + e2

p ∧ fa
p + e1

q ∧ f2
q + e2

q ∧ f1
q ] +

∫

∂Z
[e1

b ∧ f2
b + e2

b ∧ f1
b ],

(2.44)
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2.3 Infinite-dimensional port-Hamiltonian systems

where for i = 1, 2

f i
p ∈ Ωp(Z), f i

q ∈ Ωq(Z)

ei
p ∈ Ωn−p(Z), ei

q ∈ Ωn−q(Z)

f i
b ∈ Ωn−p(∂Z), ei

b ∈ Ωn−q(∂Z).

(2.45)

The spaces of differential forms Ωp(Z) and Ωq(Z) will represent the energy
variables of the two different physical energy domains interacting with each
other, while Ωn−p(∂Z) and Ωn−q(∂Z) will denote the boundary variables
whose (wedge) product represents the boundary energy flow. On Fp,q × Ep,q

we define the infinite-dimensional Stokes-Dirac structure

Theorem 2.11. [61] Consider Fp,q and Ep,q given in Equations (2.41) and (2.43)
with p, q satisfying (2.42), and the bilinear form � · � given by (2.44). Define the
following linear subspace D of Fp,q × Ep,q

D =

{

(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q |

[
fp

fq

]

=

[
0 (−1)rd
d 0

] [
ep

eq

]

;

[
fb

eb

]

=

[
1 0
0 −(−1)n−q

] [
ep |∂Z

eq |∂Z

]}

(2.46)
where |∂Z denotes the restriction to the boundary ∂Z, and r = pq+1. Then D = D⊥,
that is, D is a Dirac structure.

Remark 2.12. The relation (2.42) comes from the definition of the Stokes-
Dirac structure (2.46) and can be explained as follows: In the definition of
the Stokes-Dirac structure we equate fp which is a p−form on Z to d(−1)req

which is an n−q+1 form on Z . Similarly we equate fq which is a q−form on Z
to an n−p+1 form on Z . Also observe that the wedge product ep |∂Z ∧eq |∂Z

is a 2n − p − q form on ∂Z which equals the dimension of the boundary i.e.
n − 1.

2.3.1 Infinite-dimensional port-Hamiltonian systems

The definition of an infinite-dimensional Hamiltonian system with respect
to a Stokes-Dirac structure can now be stated as follows. Let Z be an n-di-
mensional manifold with boundary ∂Z, and let D be a Stokes-Dirac structure
as in (2.46). Consider furthermore a Hamiltonian density (energy per volume
element)

H : Ωp(Z) × Ωq(Z) × Z → Ωn(Z),

resulting in the total energy

H :=

∫

Z

H ∈ R.
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2 Port-Hamiltonian Systems

Recall (Equation (2.39)), that there exists a non-degenerate pairing between
Ωp(Z) and Ωn−p(Z), respectively between Ωq(Z) and Ωn−q(Z). This means
that Ωn−p(Z) and Ωn−q(Z) can be regarded as dual spaces to Ωp(Z), respec-
tively Ωq(Z) (although strictly contained in their functional analytic duals).
Let now αp, ∂αp ∈ Ωp(Z), αq, ∂αq ∈ Ωq(Z). Then under weak smoothness
conditions on H

H(αp + ∂αp, αq + ∂αq) =
∫

Z
H(αp + ∂αp, αq + ∂αq, z)

=
∫

Z
H(αp, αq, z) +

∫

Z
[δpH ∧ ∂αp + δqH ∧ ∂αq]

+ higher order terms in ∂αp, ∂αq,
(2.47)

for certain differential forms

δpH ∈ Ωn−p(Z)

δqH ∈ Ωn−q(Z)
(2.48)

Furthermore, from the non-degeneracity of the pairing Ωp(Z) and Ωn−p(Z)
respectively between Ωq(Z) and Ωn−q(Z), it immediately follows that these
differential forms are uniquely determined. This means that (δpH, δqH) ∈
Ωn−p(Z)×Ωn−q(Z) can be regarded as the (partial) variational derivatives of
H at (αp, αq) ∈ Ωp(Z) × Ωq(Z).

Now consider the time function

(αp(t), αq(t)) ∈ Ωp(Z) × Ωq(Z), t ∈ R,

and the Hamiltonian H(αp(t), αq(t)) evaluated along this trajectory. It follows
that at any time t

dH

dt
=

∫

Z

[δpH ∧
∂αp

∂t
+ δqH ∧

∂αq

∂t
]. (2.49)

The differential forms
∂αp

∂t
and

∂αq

∂t
represent the generalized velocities of the

energy variables αp, αq. They are connected to the Stokes-Dirac structure by
setting

fp = −∂αp

∂t

fq = −∂αq

∂t
,

(2.50)

(again the minus sign is included to have a consistent energy flow descrip-
tion). Since the right-hand side of Equation (2.49) is the rate of increase of the
stored energy H, we set

ep = δpH

eq = δqH.
(2.51)
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2.3 Infinite-dimensional port-Hamiltonian systems

Now we come to the general Hamiltonian description of an infinite-dimen-
sional system with boundary energy flow.

Definition 2.13. The distributed-parameter port-Hamiltonian system with an
n−dimensional manifold of spatial variables Z, state space Ωp(Z) × Ωq(Z)
(with p + q = n + 1), Stokes-Dirac structure D given by Equation (2.46) and
Hamiltonian H, is given as (with r = pq + 1)

[

−∂αp

∂t

−∂αq

∂t

]

=

[
0 (−1)rd
d 0

] [
δpH
δqH

]

;

[
fb

eb

]

=

[
1 0
0 −(−1)n−q

] [
δpH |∂Z

δqH |∂Z

]

.

(2.52)

By the power-conserving property of Stokes-Dirac structure it immediately
follows that for any (fp, fq, fb, ep, eq, eb) in the Stokes-Dirac structure D

∫

Z

[ep ∧ fp + eq ∧ fq] +

∫

∂Z

eb ∧ fb = 0.

Hence, by substitution of Equations (2.50) and (2.51) and using (2.49) we ob-
tain

Proposition 2.14. [61] Consider the distributed-parameter port-Hamiltonian sys-
tem Equation (2.52). Then

dH

dt
=

∫

∂Z

eb ∧ fb, (2.53)

expressing that the increase in energy on the domain Z is equal to the power supplied
to the system though the boundary ∂Z.

Notations

In this thesis we mostly deal with infinite-dimensional systems with a 1-D
spatial domain, which means that we distinguish between zero-forms and
one-forms defined on the spatial domain of the system. One forms are ob-
jects which can be integrated over every sub-interval of the interval where as
zero-forms or functions can be evaluated at any points of the interval. If we
consider a spatial coordinate z for the interval Z , then a function is simply
given by the values f(z) ∈ R for every coordinate value in z in the inter-
val, while a one-form g is given as g̃(z)dz for a certain density function g.
We denote the set of zero forms and one-forms on Z by Ω0(Z) and Ω1(Z) re-
spectively. Given a coordinate z for the spatial domain we obtain by spatial

differentiation of a function f(z) the one-form ω := df
dz

(z)dz. In coordinate
free language this is denoted as ω = df, where d is called the exterior deriva-
tive mapping zero forms to one forms.
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Figure 2.4: Transmission line

In case of a two-dimensional spatial domain Z (as in the case of the 2-D
shallow water equations, which will be discussed in Chapter 3) we have to
distinguish between zero-forms (functions), one-forms and two-forms. Again,
functions are objects which can be evaluated at any point in the spatial do-
main. One-forms are objects which can be integrated along any line segment
in the spatial domain, while two-forms are objects which can be integrated
over any part of the spatial domain. Given coordinates z1, z2 for the spatial
domain, a function is simply given by the values f(z1, z2) ∈ R for every point
(z1, z2), while a one-form is expressed as g1(z1, z2)dz1 + g2(z1, z2)dz2 for cer-
tain functions g1, g2. Finally a two-form ω ∈ Ω2(Z) is given by the infinites-
imal area element k(z1, z2)dz1dz2 for a certain function k. By spatial differ-
entiation of a function f(z1, z2) we obtain the one-form ∂f/∂z1(z1, z2)dz1 +
∂f/∂z2(z1, z2)dz2, while spatial differentiation of a one-form g1(z1, z2)dz1 +
g2(z1, z2)dz results in the two-form (∂g2/∂z1(z1, z2)− ∂g1/∂z2(z1, z2))dz1dz2.

Furthermore, given a k-form ω1 and an l-form ω2, the wedge product ω1∧ω2

is a k + l-form. Finally, we will use the Hodge star operator ∗, converting any
k−form ω on a n-dimensional spatial domain Z to an (n − k)−form ∗ω. The
definition of the Hodge star operator relies on the assumption of a Rieman-
nian metric on the spatial domain Z ; however, on our context this Rieman-
nian metric will simply be the Euclidean inner product corresponding to a
choice of local coordinates on Z. Thus on the one-dimensional spatial domain
Z we simply have ∗g(z) = g̃(z). or in other words ∗(g̃(z)dz) = g̃(z).

Example 2.15 (The Ideal transmission line). In this example, we first derive
the model of a transmission line, whose dynamics are described by the well-
known telegrapher’s equations, using the classical technique and then in the
port-Hamiltonian framework. In the course of deriving the distributed pa-
rameter representation of a dynamical system, it is typical to start with spa-
tially distributed finite lumps and then take the limit as the lumps become
infinitesimal in size. Consider the transmission line of Figure 2.4, the dy-
namics of the n-th mesh are given by the following set of equations (also see
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Figure 2.5: n−th Lumped element of the Transmission line

Figure 2.5)

q̇n = φn

Ln
− φn−1

Ln−1

φ̇n = qn+1

Cn+1
− qn

Cn
.

(2.54)

Here qn denotes the charge and φn the flux linkages. Note that the first equa-
tion of (2.54) can be written as

q̇n = −
Ln(φn−1 − φn) − φn(Ln−1 − Ln)

LnLn−1
,

which is just an approximation of the partial derivative with respect to z of
φ̃(z,t)
L(z) , with z the spatial variable ranging in [0, l], φ̃(z, t) the flux distribution

and the L(z) the distributed inductance. That is

∂

∂z

φ̃(z, t)

L(z)
≈

Ln(φn−1 − φn) − φn(Ln−1 − Ln)

LnLn−1

1

δz
.

Therefore in the limit of small spacing between the LC circuits, the system of
ordinary differential equations reduces to a single partial differential equation

∂

∂t
q̃(z, t) = −

∂

∂z

φ̃(z.t)

L(z)
.

In a similar way we obtain for the second equation of (2.54)

∂

∂t
φ̃(z, t) = −

∂

∂z

q̃(z.t)

C(z)
,

where q̃(z, t) the charge distribution and C(z) is the distributed capacitance.
In the Dirac framework the model is given as follows. The spatial domain is
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represented by a 1-D manifold with point boundaries. The energy variables
are electric charge and the magnetic flux densities, αp = q(z, t) = q̃(z, t)dz,

αq = φ(z, t) = φ̃(z, t)dz respectively, which are both one-forms on Z . The
total energy functional becomes

H=
1

2

∫ l

0

(

q̃2(z, t)

C(z)
+

φ̃2(z, t)

L(z)

)

dz

=
1

2

∫ l

0

(
∗q(z, t)

C(z)
q(z, t) +

∗φ(z, t)

L(z)
φ(z, t)

)

with variational derivatives given by δH =
[

q̃(z,t)
C(z)

φ̃(z,t)
L(z)

]T

. Power flows

though the system though the boundaries {0, l}, with the boundary variables
being the current and voltages at each end of the line. Then, the telegra-
phers equations may be expressed as a distributed-parameter port-Hamilto-
nian system as

[
∂
∂t

q(z, t)
∂
∂t

φ(z, t)

]

=

[
0 d
d 0

] [ ∗q(z.t)
C(z)

∗φ(z.t)
L(z)

]

;

[
fb

eb

]

=

[

− ∗φ(z.t)
L(z) |∂Z

∗q(z.t)
C(z) |∂Z

]

, (2.55)

the right hand relation of (2.55) defines voltages and currents at the boundary
point {0, l}. The corresponding energy balance equation is

dH

dt
=

∗q(0, t)

C(0)

∗φ(0, t)

L(0)
−

∗q(l, t)

C(l)

∗φ(l, t)

L(l)
.

Example 2.16. [55] Consider the n− dimensional wave equation

µω̈ + E∆ω = 0, ω(z, t) ∈ R, z = (z1, ..., zn) ∈ Z, (2.56)

where µ is the mass density and E is the Youngs modulus. In the Dirac frame-
work, this model is given as follows. The spatial domain is represented by an
n−dimensional smooth manifold with a smooth n − 1 dimensional bound-
ary. The energy variables are the n−form kinetic momentum ρ(t, z1, ..., zn),
and the 1−form elastic strain ε(t, z1, ..., zn) (= ∂ω

∂z1
dz1 + ... + ∂ω

∂zn
dzn). The

co-energy variables are then, the 0−form velocity

v(t, z1, ..., zn) =
∂H

∂ρ
,

and the (n − 1)− form stress

σ(t, z1, ..., zn) =
∂H

∂ε
,

34



2.3 Infinite-dimensional port-Hamiltonian systems

where H is the Hamiltonian density defined as

H(ρ, ε) =
1

2
[ε ∧ σ + ρ ∧ v].

The n−dimensional wave equation (2.56) can be written as an infinite-dimen-
sional port-Hamiltonian system as

[
ε̇
ρ̇

]

=

[
0 d
d 0

] [
∂H
∂ε
∂H
∂ρ

]

,

[
vb

σb

]

=

[
0 1
1 0

] [
∂H
∂ε

|∂Z
∂H
∂ρ

|∂Z

]

. (2.57)

The co-energy variables σ and v are related to the energy variables by the
constitutive relations

σ = E ∗ ε

v = 1
µ
∗ ρ,

(2.58)

where E and µ are the Youngs modulus and the mass density and ∗ denotes
the Hodge star operator corresponding to a choice of a Riemannian metric on
Z. Substituting ε = dω in (2.58) we obtain

d(ω̇ −
1

µ
∗ ρ) = 0 =⇒ ω̇ =

1

µ
∗ ρ + f(t).

Set f(t) = 0. Next we write the second part of (2.58) as ∗ρ̇ = − ∗ d(E ∗ ε) and
substitute ∗ρ = µω̇. This yields (due to ε = dω)

µω̈ + E(∗d ∗ d)ω = 0. (2.59)

The codifferentiation δ : Ωn−k(Z) → Ωn−k−1(Z) is a map from the space of
(n− k)− forms to the space of (n− k− 1)−forms and is defined as δ = −∗ d∗,
hence

(∗d ∗ d)ω = −(δ ◦ d)ω = −(δ ◦ d + d ◦ δ)ω = ∆ω, since δω = 0.

The system (2.57) satisfies the energy balance law

dH(ρ, ε)

dt
=

∫

∂Z

σb ∧ vb.

where H is the Hamiltonian defined as H(ρ, ε) =
∫

Z
H(ρ, ε).

2.3.2 The shallow water equations

The dynamics of an open-channel canal can be described by the shallow wa-
ter equations given by the following set of equations [47]

∂t

[

h̃
ũ

]

+

[

ũ h̃
g ũ

]

∂z

[

h̃
ũ

]

= 0, (2.60)
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with h̃(z, t) the height of the water level, ũ(z, t) the water speed and g the
acceleration due to gravity, with z being the spatial variable representing the
length of the canal i.e., z ∈ [0, l]. The first equation expresses the mass bal-
ance and the second equation comes from the momentum balance. The total
energy (Hamiltonian) is given by

H =
1

2

∫ l

0

[h̃ũ2 + gh̃2]dz. (2.61)

In case of shallow water equations the energy variables are the height h̃(z, t)
and the velocity ũ(z, t). The energy exchange of the system with the environ-
ment takes place through the boundary {0, l} of the system.

The Stokes-Dirac structure corresponding to the 1-D fluid flow modeled
by the shallow water equations is defined as follows: The spatial domain
Z is represented by a 1-D manifold with point boundaries. The height of
the water flow (representing the mass density) through the canal h(z, t) =

h̃(z, t)dz is identified with a 1-form on Z . Note that the integral of h over a
subinterval denotes the total amount of water contained in that subinterval.
Furthermore, assuming the existence of a Riemannian metric <, > on Z , we
identify (by index raising w.r.t this Riemannian metric) the Eulerian vector
field u on Z with a 1-form. This leads to the consideration of the (linear)
space of energy variables

X := Ω1(Z) × Ω1(Z).

To identify the boundary variables we consider space of 0-forms, i.e., space
of functions on ∂Z, to represent both the boundary flow and the dynamic
pressure at the boundary. We thus consider the space of boundary variables

Ω0(∂Z) × Ω0(∂Z).

Proposition 2.17. Let Z ⊂ R be a 1-dimensional manifold with boundary ∂Z.
Consider V = Ω1(Z) × Ω1(Z) × Ω0(∂Z) and V ∗ = Ω0(Z) × Ω0(Z) × Ω0(∂Z),
together with the bilinear form

<< (f1
h , f1

u, f1
b , e1

h, e1
u, e1

b), (f
2
h , f2

u, f2
b , e2

h, e2
u, e2

b) >>

:=

∫

Z

(e1
h ∧ f2

h + e2
h ∧ f1

h + e1
u ∧ f2

u + e2
u ∧ f1

u)

+

∫

∂Z

(e1
b ∧ f2

b + e2
b ∧ f1

b ). (2.62)

with f i
h, f i

v ∈ Ω1(Z), ei
h, ei

v, f
i
b, e

i
b ∈ Ω0(∂Z)

Then, D ⊂ V × V ∗ defined as

D = {(fh, fu, fb, eh, eu, eb) ∈ V × V ∗

fh = deu, fu = deh, fb = eh |∂Z , eb = −eu |∂Z}.
(2.63)
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Figure 2.6: Flow of water through a canal.

where d is the exterior derivative (mapping 0−forms into 1- forms), |∂W denoting
the restriction of 0-forms on Z to 0-forms on the boundary ∂Z , is a Dirac structure
with respect to the bilinear form <<, >> defined as above, that is D = D⊥, where
⊥ is with respect to (2.62). D is called a Stokes-Dirac structure. In terms of shallow
water equations the above terms would correspond to

fh = −
∂

∂t
h(z, t), eh = δhH =

1

2
(∗u)(∗u) + g ∗ h

fu = −
∂

∂t
u(z, t), eu = δuH = ∗h ∗ u

fb = δuH |∂W , eb = −δhH |∂W , (2.64)

with the Hamiltonian given as

H =

∫

Z

1

2
(∗u)h(∗u) +

1

2
g(∗h)h.

Substituting (2.64) into (2.63), we obtain the shallow water equations (2.60).

Proof. The proof follows the same arguments as in [61], making use of the
Stokes’ theorem and hence we omit the proof here.

Energy Balance

Energy balance follows immediately from the power-conserving property of
the Stokes-Dirac structure, given by

∫

Z

(eh ∧ fh + eu ∧ hu) +

∫

∂Z

eb ∧ fb = 0,
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and hence

d

dt
H=

∫

∂Z

ebfb

= h̃ũ(
1

2
ũ2 + gh̃) |L0

= (ũ(
1

2
h̃ũ2 +

1

2
gh̃2)) |L0 +(ũ(

1

2
gh̃2)) |L0 .

The first term in last line of the above expression for energy balance corre-
sponds to the energy flux (the total energy times the velocity) through the
boundary and the second term is the work done by the hydrostatic pressure
given by pressure times the velocity.

2.3.3 Example of a non-constant Stokes-Dirac structure

We consider a slightly different and more complicated case in which we con-
sider an additional component of the velocity v(z, t) as shown in the Figure
(2.7). In addition, we assume that the height h, the horizontal velocity u and
the additional velocity component v do not depend on this additional coor-
dinate and hence we can still model this as a 1-D fluid flow as shown below.
The dynamics of the system are described by the following set of equations
[47]

∂th̃ = −∂z(h̃ũ)

∂t(h̃ũ) = −∂z(h̃ũ2 +
1

2
gh̃2)

∂t(h̃ṽ) = −∂z(h̃ũṽ), (2.65)

with h̃(z, t) the height of the water level, ũ(z, t) the water velocity in the z di-
rection and ṽ(z, t) the additional component of the velocity with g the accel-
eration due to gravity. The first equation again corresponds to mass balance,
while the second and third equations correspond to the momentum balance.
The above set of equations can alternatively be written as

∂th̃ = −∂z(h̃ũ)

∂tũ = −∂z(
1

2
ũ2 + gh̃)

∂tṽ = −ũ∂z ṽ. (2.66)

In the port-Hamiltonian framework this is modeled as follows. The energy
variables now are h(z, t), u(z, t) and v(z, t), the Hamiltonian of the system is
given by

H =

∫

Z

1

2

(

h̃(ũ2 + ṽ2) + gh̃2
)

dz, (2.67)
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Figure 2.7: Flow with the additional velocity component.

and the variational derivatives are given by δH = [12 (ũ2 + ṽ2) h̃ũ h̃ṽ]T . As
before the interaction of the system with the environment takes place through
the boundary of the system {0, l}. The Stokes-Dirac structure corresponding
to the shallow water equations with an additional velocity component, and
modeled as a 1-D fluid flow, is defined as follows: The spatial domain Z ⊂ R

as before is represented by a 1-D manifold with point boundaries. The height
of the water flow through the canal h(z, t) is identified with a 1-form on Z
and again assuming the existence of a Riemannian metric <, > on W , we can
identify (by index raising w.r.t this Riemannian metric) the Eulerian vector
fields u and v on Z with a 1-form. This leads to the consideration of the
(linear) space of energy variables.

X := Ω1(Z) × Ω1(Z) × Ω1(Z).

To identify the boundary variables we consider space of 0-forms, i.e., the
space of functions on ∂Z, to represent the boundary height ,the dynamic
pressure and the additional velocity component at the boundary. We thus
consider the space of boundary variables

Ω0(∂Z) × Ω0(∂Z) × Ω0(∂Z).

We will now define the Stokes-Dirac structure on X ×Ω0(∂Z), (i.e., the space
of energy variables and part of the space of the boundary variables) in the
following way

Proposition 2.18. (Modified Stokes-Dirac structure) Let Z ⊂ R be a 1 -dimensional
manifold with boundary ∂Z. Consider V = X × Ω0(∂Z) = Ω1(Z) × Ω1(Z) ×
Ω1(Z) × Ω0(∂Z), together with the bilinear form

<< (f1
h , f

1
u, f

1
v , f

1
b , e

1
h, e

1
u, e

1
v, e

1
b), (f

2
h , f

2
u, f

2
v , f

2
b , e

2
h, e

2
u, e

2
v, e

2
b) >>

:=

Z

Z

(e1
h ∧ f

2
h + e

2
h ∧ f

1
h + e

1
u ∧ f

2
u + e

2
u ∧ f

1
u + e

1
v ∧ f

2
v + e

2
v ∧ f

1
v )

+

Z

∂Z

(e1
b ∧ f

2
b + e

2
b ∧ f

1
b ), (2.68)

39



2 Port-Hamiltonian Systems

where

f i
h ∈ Ω1(Z), f i

u ∈ Ω1(Z), f i
v ∈ Ω1(Z), f i

b ∈ Ω0(∂Z)

ei
h ∈ Ω0(Z), ei

u ∈ Ω0(Z), ei
v ∈ Ω0(Z), ei

b ∈ Ω0(∂Z).

Then D ⊂ V × V ∗ defined as

D = {(fh, fu, fv, fb, eh, eu, ev, eb) ∈ V × V ∗ |




fh

fu

fv



 =





0 d 0
d 0 − 1

∗h
d(∗v)

0 1
∗h

d(∗v) 0









eh

eu

ev



 ; (2.69)





fb

eb

e′v



 =





0 1 0
−1 0 0
0 0 1

∗h









eu |∂Z

eh |∂Z

ev |∂Z



 .

is a Dirac structure, that is D = D⊥, where ⊥ is with respect to (2.68).
In terms of shallow water equations with an additional velocity component the above
terms would correspond to

fh = −
∂

∂t
h(z, t), eh = δhH = (

1

2
((∗u)(∗u) + (∗v)(∗v)) + g(∗h))

fu = −
∂

∂t
u(z, t), eu = δuH = (∗h)(∗u)

fv = −
∂

∂t
v(z, t), ev = δvH = (∗h)(∗v)

fb = δuH |∂W , eb = −δhH |∂W ,

e′v =
1

∗h
δvH |∂W . (2.70)

with the Hamiltonian given as

H =

∫

Z

1

2
((∗u)h(∗u) + (∗u)h(∗u)) +

1

2
g(∗h)h.

Substituting (2.70) into (2.69), we obtain the equations (2.66).

Proof. The proof is based on the skew symmetric term in the 3× 3 matrix and
also that the boundary variable e′v in (2.69)does not contribute to the bilinear
form (2.68) and also follows a procedure as in [61].

Remark 2.19. The Dirac structure above is no more a constant Dirac structure
as it depends on the energy variables h, u and v. Moreover, we will also see
that of the three boundary variables fb, eb and e′v, only fb and eb play a role in
the power exchange through the boundary as will be seen in the expression
for energy balance. We consider e′v as the third boundary variable instead of
ev |∂W because to study interconnections of such systems we would like to
consider v as the boundary variable instead of hv at the boundary as will be
shown later in Chapter 3.
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Energy Balance

It follows from the power-conserving property of a Dirac structure that the
modified Stokes-Dirac structure defined above has the property

∫

W

(eh ∧ fh + eu ∧ fu + ev ∧ fv) +

∫

∂W

eb ∧ fb = 0,

and hence we can get the energy balance

d

dt
H =

∫

∂W

eb ∧ fb,

which can also be seen by the following

d

dt
H =

∫

Z

[δhH ∧
∂h

∂t
+ δuH ∧

∂u

∂t
+ δvH ∧

∂v

∂t
]

= −

∫

Z

d[δhH∧δuH]

=

∫

∂Z

δhH∧δuH

=

∫

∂Z

eb ∧ fb

= h̃ũ(
1

2
ũ2 + gh̃) |L0

= (ũ(
1

2
h̃ũ2 +

1

2
gh̃2)) |L0 +(ũ(

1

2
gh̃2)) |L0 .

As in the previous case the first term in last line of the above expression
for energy balance corresponds to the energy flux (the total energy times the
velocity) through the boundary and the second term is the work done by the
hydrostatic pressure given by pressure times the velocity. It is also seen that
the boundary variables which contribute to the power at the boundary are fb

and eb and the third boundary variable e′v does not contribute to it.
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3

Interconnections of port-
Hamiltonian Systems

”... for geometry, you know, is the gate of science, and the gate is
so low and small that one can only enter it as a little child.” -William
Clifford.

In the previous chapter we have defined the notion of a Dirac structure
and we have seen how it formalizes a power-conserving interconnection.
Using this notion of Dirac structure we defined implicit port-Hamiltonian
systems, both finite and infinite-dimensional in nature, which describe en-
ergy-conserving systems with external variables. In this chapter we focus
on interconnections of such systems. We define what is a power-conserving
interconnection, defined on the space of external variables. Since the inter-
connection preserves the power in the system, we can say that the resulting
system would again be energy-conserving. It can also be shown that the re-
sulting system can be described again as a port-Hamiltonian system. This
property is useful when modeling energy-conserving systems using a modu-
lar approach, where the system is thought of as an interconnection of a num-
ber of sub-systems. This has the advantage in the sense that subsystems are
smaller and easier to model than the system as a whole. It is also natural
from an engineering point of view to regard systems as being composed of
different subsystems, from different physical domains. The decomposition
can be useful for analyzing the overall behavior of the system. Furthermore,
because of the modularity, the modeling process can be performed in an it-
erative manner, gradually refining the model by adding other subsystems.
Also from a control point of view the interconnection approach is important,
since implementing a control law or controlling a system is generally done
by interconnecting the given system with an external device (a controller) via
the external-port variables. In fact, control can be seen in a natural way as the
interconnection of the system with other subsystems (the controller) through
the port variables. An immediate example is the control by interconnection of
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1D 2D

1f

1e

Af

Ae

Bf

Be

2f

2e

Figure 3.1: The composition of D1 and D2

port-Hamiltonian systems, where the plant port-Hamiltonian system is con-
nected to a controller port-Hamiltonian system via a feedback loop, such that
the interconnected system has the desired stability properties.

In this chapter we study compositions of Dirac structures and show that the
composition is again a Dirac structure and hence the interconnected system
again defines a port-Hamiltonian system. The energy of the interconnected
system is the total energy of the interconnected system, that is, the sum of
energy functions of the individual subsystems. We study composition of
finite-dimensional Dirac structures with finite-dimensional Dirac structures
and composition of infinite-dimensional systems defined with respect to a
Stokes-Dirac structure with Stokes-Dirac structures. Finally, we also study
interconnections which are mixed in nature, that is interconnections of finite-
dimensional systems with infinite-dimensional systems. Also we study a case
of interconnection of two infinite-dimensional systems interconnected to each
other through a distributed finite-dimensional systems. The concept of inter-
connection is also extended to systems with dissipation.

3.1 Finite-dimensional systems

In this section we investigate the composition or interconnection properties of
finite-dimensional Dirac structures. We recall here the results on composition
of two finite-dimensional Dirac structures with partially shared variables.

Thus consider a Dirac structure D1 on a product space F1×F of two linear
spaces F1 and F , and another Dirac structure D2 on a product space F × F2,
with also F2 being a linear space. The linear space F is the space of shared
flow variables, and F∗ the space of shared effort variables; see Figure 3.1.

In order to compose D1 and D2 a problem arises of sign convention for the
power flow corresponding to the power variables (f, e) ∈ F × F∗. Indeed, if
< e | f > denotes incoming power, then for

(f1, e1, fA, eA) ∈ D1 ⊂ F1 ×F∗
1 ×F ×F∗,

the term < eA | fA > denotes the incoming power in D1 due to the power
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variables (fA, eA) ∈ F × F∗, while for

(fB, eB, f2, e2) ∈ D2 ⊂ F ×F∗ ×F2 ×F∗
2 ,

the term < eB | fB > denotes the incoming power in D2. Clearly, the incoming
power in D1 due to the power variables in F × F∗ should equal the outgoing
power from D2. Thus we cannot simply equate the flows fA and fB and the
efforts eA and eB , but instead we define the interconnection constraints as

fA = −fB ∈ F

eA = eB ∈ F∗.
(3.1)

Therefore the composition of the Dirac structures D1 and D2, denoted D1 ‖ D2,
is defined as

D1 ‖ D2 := {(f1, e1, f, e) ∈ F1 ×F∗
1 ×F2 ×F∗

2 | ∃(f, e) ∈ F × F∗ s.t.

(f1, e1, f, e) ∈ D1 and (−f, e, f2, e2) ∈ D2} .
(3.2)

The fact that the composition of two finite-dimensional Dirac structures is
again a Dirac structure has been proved before in [7, 59]. We just recall here
the proof of the same here.

Theorem 3.1. [7] Let D1, D2 be Dirac structures as in Definition 2.1 (defined with
respect to F1 × F∗

1 × F × F∗, respectively F × F∗ × F2 × F∗
2 , and their bilinear

forms). Then D1 ‖ D2 is a Dirac structure with respect to the bilinear form on
F1 ×F∗

1 ×F2 ×F∗
2 .

Proof. Consider D1, D2 defined in matrix kernel representation by

D1 = {(f1, e1, f, e) ∈ F1 ×F∗
1 ×F ×F∗ | F1f1 + E1e1 + Ff + Ee = 0}

D2 = {(f ′, e′, f2, e2) ∈ F × F∗ ×F2 ×F∗
2 | F ′f ′ + E′e′ + F2f2 + E2e2 = 0}.

In the following we shall make use of the following basic fact from linear
algebra:

[(∃λ s.t. Aλ = b)] ⇔ [∀α s.t. αT A = 0 ⇒ αT b = 0]. (3.3)

Note that D1, D2 are alternatively given in matrix image representation as

D1 = im











ET
1

FT
1

ET

FT

0
0











D2 = im











0
0

E′T

F ′T

ET
2

FT
2











. (3.4)
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Hence,

(f1, e1, f2, e2) ∈ D1 ‖ D2 ⇔ ∃λ, λ′ s.t.











f1

e1

0
0
f2

e2











=











ET
1 0

FT
1 0

ET E′T

FT −F ′T

0 FT
2

0 ET
2











[
λ
λ′

]

⇔

⇔ ∀(β1, α1, β
′, α′, β2, α2) s.t. (βT

1 αT
1 β′

2α
′
2β

T
2 αT

2 )











ET
1 0

FT
1 0

ET E′T

FT −F ′T

0 FT
2

0 ET
2











= 0,

βT
1 f1 + αT

1 e1 + βT
2 f2 + αT

2 e2 = 0 ⇔

⇔ ∀(α1, β1, α
′, β′, α2, β2) s.t.

[
F1 E1 FT ET 0 0
0 0 −F ′T E′T F2 E2

]











α1

β1

α′

β′

α2

β2











= 0,

βT
1 f1 + αT

1 e1 + βT
2 f2 + αT

2 e2 = 0 ⇔

⇔ ∀(α1, β1, α2, β2) ∈ D1 ‖ D2, βT
1 f1 + αT

1 e1 + βT
2 f2 + αT

2 e2 = 0 ⇔

⇔ (f1, e1, f2, e2) ∈ (D1 ‖ D2)
⊥.

Thus D1 ‖ D2 = (D1 ‖ D2)
⊥, and so it is a Dirac structure.

Remark 3.2. Instead of the canonical interconnection constraints fA = −fB,
eA = eB (cf. Equation (3.1)) another standard power-conserving interconnec-
tion is the ’gyrative’ interconnection

fA = eB, fB = −eA. (3.5)

(The standard feedback interconnection, regarding fA, fB as inputs, and eA, eB

as outputs, is of this type.) Composition of two Dirac structures D1,D2 by this
gyrative interconnection also results in a Dirac structure. In fact, the gyrative
interconnection of D1 and D2 equals the interconnection D1 ‖ I ‖ D2, where
I is the gyrative (or symplectic) Dirac structure

fIA = −eIB, fIB = −eIA, (3.6)

interconnected to D1 and D2 via the canonical interconnections
fIA = −fA, eIA = eA and fIB = −fB, eIB = eB .
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3.1 Finite-dimensional systems

Since we now know that the composition of two Dirac structures is a Dirac
structure, it readily follows that the power-conserving interconnection of a
number of Dirac structures is again a Dirac structure. Let us consider l Dirac
structures Dk ⊂ Fk×F∗

k×FIK×F∗
IK , k = 1, ..., l, interconnected to each other

via an interconnection Dirac structure DI ⊂ FI1 ×F∗
I1 × ...×FI1 ×F∗.

I1. This
can be regarded as the composition of the product Dirac structure D1× ...×Dl

with the interconnection Dirac structure DI . Hence by the above theorem the
overall interconnection is again a Dirac structure.

It is immediate that the composition of Dirac structures is associative in the
following sense. Given two Dirac structures D1 ⊂ F1×F∗

1 ×F2×F∗
2 and D2 ⊂

F2 × F∗
2 ×F3 × F∗

3 their composition D1 ‖ D2. Now compose the composed
Dirac structure D1 ‖ D2 with another Dirac structure D3 ⊂ F3×F∗

3 ×F4×F∗
4 ,

resulting in the composition (D1 ‖ D2) ‖ D3. It can easily be checked that the
same composed Dirac structure results by first composing D2 with D3, and
then composing the outcome with D1, that is

(D1 ‖ D2) ‖ D3 = D1 ‖ (D2 ‖ D3) = D1 ‖ D2 ‖ D3.

3.1.1 Composition of Dirac structure and a resistive relati on

Proposition 3.3. Let D be a Dirac structure defined with respect to Fs×F∗
s ×FR×

F∗
R. Furthermore, let R be a resistive relation defined with respect to FR ×F∗

R given
by

RffR + ReeR = 0,

where the square matrices Rf and Re satisfy the symmetry and semi-positive defi-
niteness condition

RfRT
e = ReR

T
f ≥ 0.

Define the composition D ‖ R of the Dirac structure and the resistive relation in the
same way as the composition of two Dirac structures. Then

(D ‖ R)⊥ = D ‖ −R,

where −R denotes the pseudo-resistive relation given by

RffR − ReeR = 0.

(−R is called a pseudo-resistive relation since it corresponds to negative instead of
positive resistance).

Proof. We follow the same steps as in the proof that the composition of two
Dirac structures is again a Dirac structure, Theorem 3.1 (where we take F1 =
FS , F2 = FR, and F3 void). Because of the sign difference in the definition
of a resistive relation as compared with the definition of a Dirac structure we
immediately obtain the stated proposition.
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3 Interconnections of port-Hamiltonian Systems

3.1.2 Port-Hamiltonian system with dissipation

Using the result in Proposition 3.3, we can extend the kernel representation
(2.36) for a port-Hamiltonian system to a system with dissipation. The Dirac
structure with dissipation would now be given as

D = {(fs, es, fR, eR, f, e) ∈ X × X ∗ ×FR × F∗
R ×F × F∗ |

FSfs + ESes + FRfR + EReR + Ff + Ee = 0} ,

with

(i) ESFT
S + FSET

S + ERFT
R + FRET

R + EFT + FET = 0

(ii) rankFS

...Es

...FR

...ER

...F
...E = dim(X × FR × F),

with the flow and effort variables connected to the resistive elements related
as

fR = −ReR.

Then the port-Hamiltonian system with dissipation is given by the set of
equations

−FS ẋ(t) + ES

∂H

∂x
(x(t)) − FRReR(t) + EReR(t) + Ff(t) + Ee(t) = 0

and it satisfies the energy balance

dH

dt
(x(t)) =<

∂H

∂x
(x(t) | ẋ(t) >

= eT
c fc + eT

I fI − eRReR

≤ eT
c fc + eT

I fI .

In the same way as the composition of two Dirac structures we can also
treat the problem of composition of two resistive relations.

Proposition 3.4. Let R1 and R2 be resistive relations as in Proposition 3.3, defined
with respect to FR1 ×F∗

R1 ×F ×F∗, respectively FR2 ×F∗
R2 ×F ×F∗and their

bilinear forms, withF×F∗ being the space of shared flow and effort variables between
R1 and R2. Then R1 ‖ R2 is again a resistive relation with the property that

(R1 ‖ R2)
⊥ = −R1 ‖ −R2,

where again −R denotes the pseudo resistive relation as stated in the above proposi-
tion.

Proof. The proof follows the same steps as in the proof of composition of
two Dirac structures, Theorem 3.1 (where we take F1 = FR1, F2 = F and
F3 = FR2). Again because of the sign difference in the definition of a Dirac
structure we immediately obtain the stated proposition.
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3.2 Infinite-dimensional systems

1D
2H

2R

2D

1R

1H

Figure 3.2: (D1 ‖ R1) ‖ (D2 ‖ R2)

Now suppose we have a port-Hamiltonian system with dissipation (which
can be viewed as the composition of a Dirac structure and a resistive relation)
and we wish to interconnect it to another port Hamiltonian system with dissi-
pation, what would the total interconnection structure look like? The answer
to this question is the following corollary which comes as a result of the above
three propositions.

Corollary 3.5. Let D1 ‖ R1 and D2 ‖ R2 be two Dirac structures interconnected to
a resistive relation (each representing a port-Hamiltonian system with dissipation),
then the composed structure (D1 ‖ R1) ‖ (D2 ‖ R2) (see Figure 3.2) will have a
structure of the form D ‖ R with the property that (D ‖ R)⊥ = (D ‖ −R), with
−R again denoting the pseudo resistive relation corresponding to negative resistance.
D is the result of composition of Dirac structures of both systems D1 ‖ D2 and R
is the composition of resistive relations of both the systems R1 ‖ R2. In the Figure
H1 and H2 are the Hamiltonians of the respective port-Hamiltonian systems with
dissipation.

3.2 Infinite-dimensional systems

Similar to finite-dimensional case one can also investigate interconnections in
the infinite-dimensional case. However there is clear distinction in the case
of infinite-dimensional systems in the sense that interconnections in infinite-
dimensional systems can occur in two ways, either through the spatial do-
main or through the boundary of the spatial domain of the system or both.
The same case holds for composition of infinite-dimensional system given
by a Stokes-Dirac structure with a resistive relation where the resistive rela-
tion can again either enter through the spatial domain (a part or whole of
the spatial domain) of the Stokes-Dirac structure or by terminating some or
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3 Interconnections of port-Hamiltonian Systems

qpf ,

bf be

qpRe
,qpe ,

'

,qpRf

'

,qpR
e

qpRf ,

D R

Figure 3.3: The interconnection of D and R

all of its boundary ports by a resistive relation. The case of terminating the
boundary of the system with a 1-D spatial domain by a resistive relation can
be considered as a special case of interconnection of mixed finite and infinite-
dimensional port-Hamiltonian systems as will be discussed in Section 3.2.1.

3.2.1 Composition of Dirac structure and a resistive relati on

We discuss here the composition of a Stokes-Dirac structure and a resistive
relation, where the dissipation enters into the system through the spatial do-
main (part or whole of it). This composition enables us to define an infinite-
dimensional port-Hamiltonian system with dissipation. Consider a Stokes-
Dirac structure D defined on a product space Fp,q×FRp,q

×Fb
1 and a resistive

relation R on the space FRp,q
. The space FRp,q

× ERp,q
is the space of shared

flow and effort variables between D and R. We then define the standard in-
terconnection constraints as

fRp = −f
′

Rp ∈ FRp, fRq = −f
′

Rq ∈ FRq

eRp = −e
′

Rp ∈ ERp, eRq = −e
′

Rq ∈ ERq.

(3.7)

The composition D ‖ R is then defined as (also see Figure 3.3)

D ‖ R := {(fp, fq, ep, eq, fb, eb) ∈ Fp ×Fq × Ep × Eq ×Fb × Eb |

∃(fRp, fRq, eRp, eRq) ∈ FRp ×FRq × ERp × ERq s.t.

(fp, fq, ep, eq, fRp, fRq, eRp, eRq, fb, eb) ∈ D,
(−fRp,−fRq, eRp, eRq) ∈ R.

1For brevity, we sometimes use the notation Fp,q for Fp ×Fq , similarly for Ep,q,FRp,q
, ERp,q
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3.2 Infinite-dimensional systems

Proposition 3.6. Let D be a Stokes-Dirac structure defined with respect to Fp,q ×
Ep,q ×FRp,q

× ERp,q
×Fb × Eb as follows:

[
fp

fq

]

=

[
0 (−1)rd
d 0

] [
ep

eq

]

− gR

[
fRp

fRq

]

[
eRp

eRq

]

= gT
R

[
ep

eq

]

[
fb

fb

]

=

[
1 0
0 −(−1)n−q

] [
ep |∂Z

eq |∂Z

]

.

(3.8)

Furthermore let R be a resistive relation defined with respect to FRp,q
× ERp,q

. Let
S∗ : Ωn−k(Z) → Ωk(Z) be a map satisfying

∫

Z

eR ∧ (S ∗ eR) =

∫

Z

(S ∗ eR) ∧ eR ≥ 0, ∀eR ∈ Ωn−k(Z), R ∈ R. (3.9)

We consider here a typical case where the flows and the efforts of the energy dissipat-
ing elements are related as

fR = −S ∗ eR.

Here fR and eR correspond to the flows and effort variables of the resistive elements
in both the p and q energy domains, i.e.

fR =
[
fRp

fRq

]T

eR =
[
eRp

eRq

]T
,

similarly S also incorporates the dissipation in both the energy domains. Typically S
is a block of the form

S =

[
G 0
0 R

]

. (3.10)

Defining interconnections of D and R in the standard way, we have the composed
structure as follows

[
fp

fq

]

=

[
0 (−1)rd
d 0

] [
ep

eq

]

− gR

[
fRp

fRq

]

[
fRp

fRq

]

= −

[
G∗ 0
0 R∗

] [
ep

eq

]

[
eRp

eRq

]

= gT
R

[
ep

eq

]

.

(3.11)

together with the boundary conditions. The composed structure then has the follow-
ing property

(D ‖ R)⊥ = D ‖ −R

where R again is a pseudo resistive relation (corresponding to the negative resis-
tance).
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3 Interconnections of port-Hamiltonian Systems

Proof. For simplicity of the proof we assume zero boundary conditions (mean-
ing that all the boundary variables are set to zero). Then the bilinear form on
D ‖ R is given by

<< (f1
p , f1

q , e1
p, e

1
q), (f

2
p , e2

p, f
2
q , e2

q) >>:=

∫

z

[e2
p∧f1

p +e1
p∧f2

p +e2
q ∧f1

q +e1
q∧f2

q ].

(3.12)
Part1: Take a (f1

p , f1
q , e1

p, e
1
q) ∈ D ‖ R and take any other (f2

p , f2
q , e2

p, e
2
q) ∈ D ‖

(−R). By substituting (3.8) into (3.12), the right hand side of (3.12) becomes

∫

Z

[e2
p∧(de1

q +G∗e1
p)+e1

p∧(de2
q−G∗e2

p)+e2
q∧(de1

p +R∗e1
q)+e1

q∧(de2
p−R∗e2

q)]

=

∫

Z

[e2
p∧de1

q+e2
p∧G∗e1

p+e1
p∧de2

q−e1
p∧G∗e2

p+e2
q∧de1

p+e2
q∧R∗e1

q+e1
q∧de2

p−e1
q∧R∗e2

q].

(3.13)
We now use the following properties of the exterior derivative and the Hodge
star operator

d(α ∧ β) = dα ∧ β + α ∧ dβ

α ∧ β = β ∧ α

α ∧ (β ∗ γ) = (β ∗ α) ∧ γ.

then, using the above properties and the Stokes’ theorem, Equation (3.13) can
be written as

∫

Z
[d(e2

p ∧ e1
q) − de2

p ∧ e1
q + G ∗ e2

p ∧ e1
p + d(e1

p ∧ e2
q) − de1

p ∧ e2
q

−G ∗ e2
p ∧ e1

p + de1
p ∧ e2

q + R ∗ e2
q ∧ e1

q + de2
p ∧ e1

q − R ∗ e2
q ∧ e1

q] = 0

Hence (D ‖ −R) ⊂ (D ‖ R)⊥

PartII: Let (f1
p , f1

q , e1
p, e

1
q) ∈ D ‖ R and let (f2

p , f2
q , e2

p, e
2
q) ∈ (D ‖ R)⊥, hence

the right hand side of (3.12) is zero for these elements and hence by substitu-
tion, we have

∫

Z
[e2

p ∧ (de1
q + G ∗ e1

p) + e1
p ∧ f2

p + e2
q ∧ (de1

p + R ∗ e1
q) + e1

q ∧ f2
q ] = 0

⇒
∫

Z
[e2

p ∧ de1
q + e2

p ∧ G ∗ e1
p + e1

p ∧ f2
p + e2

q ∧ de1
p + e2

q ∧ R ∗ e1
q + e1

q ∧ f2
q ] = 0.

Now, again using the above mentioned properties of the exterior derivative
and the Hodge star operator,we get

∫

Z

[d(e2
p ∧ e1

q) − de2
p ∧ e1

q + G ∗ e2
p ∧ e1

p + e1
p ∧ f2

p +

d(e2
q ∧ e1

p) − de2
q ∧ e1

p + R ∗ e2
q ∧ e1

q + e1
q ∧ f2

q = 0].
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3.2 Infinite-dimensional systems

Since, we assume zero boundary conditions and applying the Stokes’ theo-
rem the above expression can be written as

∫

z

−(de2
p − R ∗ e2

q) ∧ e1
q − (de2

q − G ∗ e2
p) ∧ e1

p + f2
p ∧ e1

p + f2
q ∧ e1

q = 0,

which implies that

f2
p = de2

q − G ∗ e2
p

f2
q = de2

p − R ∗ e2
q,

showing that (f2
p , f2

q , e2
p, e

2
q) ∈ D ‖ (−R), which means that (D ‖ R)⊥ ⊂ D ‖

(−R), completing the proof

Remark 3.7. Equation (3.11), defines an infinite-dimensional port-Hamilto-
nian system with dissipation. The port-Hamiltonian system with dissipation
now satisfies the energy balance inequality

dH

dt
=

∫

∂Z

fb ∧ eb −

∫

Z

eR ∧ S(eR)

≤

∫

∂Z

fb ∧ eb.

Example 3.8 (A transmission line with dissipation). Consider the dynamics
of the transmission line as in (2.55) but now with dissipation in the line. The
dynamics are then given by

∂q

∂t
= −d

(
∗φ(t, z)

L(z)

)

− G(z)

(
q(t, z)

C(z)

)

∂φ

∂t
= −d

(
∗q(t, z)

C(z)

)

− R(z)

(
φ(t, z)

L(z)

)

. (3.14)

with G(z), R(z) respectively the distributed conductance and resistance of
the line. Now, in terms of the definition of the resistive relation in Proposition
3.6, the matrix S in (3.10) would accommodate the distributed conductance
G(z) and the distributed resistance R(z) of the line. The corresponding Dirac
structure with dissipation is given by

[
−∂q

∂t

−∂φ
∂t

]

=

([
0 d
d 0

]

−

[
G∗ 0
0 R∗

])[ ∗q(t,z)
C(z)

∗φ(t,z)
L(z)

]

, (3.15)

together with boundary voltages and currents. The transmission line with
dissipation then satisfies the following energy balance inequality

dH

dt
= −

∫

Z

{
GV 2(z, t) + RI2(z, t)

}
+ V (L, t)I(L, t) − V (0, t)I(0, t),
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3 Interconnections of port-Hamiltonian Systems

where
V (t, z) = ∗q(t,z)

C(z) , I(t, z) = ∗φ(t,z)
L(z) ,

are the distributed voltages and currents respectively.

3.2.2 Composition of Dirac structures

In a similar way we can also view the interconnection of two Stokes-Dirac
structures through the spatial domain, in which case we replace the resistive
relation in the above proposition with a Stokes-Dirac structure. We consider
a Stokes-Dirac structure D1 on a product space Fp,q × Fb1 and another Dirac
structure D2 on the product space Fp,q × Fb2. The space Fp,q is the space
of shared flow variables and Ep,q the space of shared effort variables. The
composition of these two Stokes-Dirac structures is then to define the inter-
connection constraints as

fp = −f ′
p ∈ Fp, fq = −f ′

q ∈ Fq

ep = e′p ∈ Ep, eq = e′q ∈ Eq.

The composition D1 ‖ D2 of the two Stokes-Dirac structures is defined as

D1 ‖ D2 := {(fb1, eb1, fb2, eb2) ∈ Fb1 × Eb1 ×Fb2 × Eb2 |

∃(fp, fq, ep, eq) ∈ Fp,q × Ep,q s.t.

(fp, fq, ep, eq, fb1 , eb1) ∈ D1 and (fp, fq, ep, eq, fb2 , eb2) ∈ D2.

Proposition 3.9. Let D1, D2 be a stokes-Dirac structures defined with respect to
Fp,q × Ep,q × F1b × E1b, respectively Fp,q × Ep,q × F2b × E2b and their respective
bilinear forms. Then D1 ‖ D2 is a Dirac structure defined with respect to the bilinear
form on F1b × E1b ×F2b × E2b, the boundary variables.

Proof. The proof follows the same procedure as in Proposition 3.6 where now
the bilinear form is defined on the space of boundary variables as

<< (f1
b1, e

1
b1, f

1
b2, e

1
b2), (f

2
b1, e

2
b1, f

2
b2, e

2
b2) >>:=

∫

∂z

[e2
b1 ∧ f1

b1 + e1
b1 ∧ f2

b1 + e2
b2 ∧ f1

b2 + e1
b2 ∧ f2

b2].

The rest of the proof follows the same procedure, by proving the following
two inclusions

(D1 ‖ D2) ⊂ (D1 ‖ D2)
⊥

(D1 ‖ D2)
⊥ ⊂ (D1 ‖ D2).
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3.2 Infinite-dimensional systems

3.2.3 Interconnections through the boundary

So far we have looked at interconnections or composition of Stokes-Dirac
structures through the spatial domain. We now focus on interconnections of
two Stokes-Dirac structures through the boundary. Consider a Stokes-Dirac
structure D1 on a product space Fp,q ×Fb and another Dirac structure D2 on
the product space F ′

p,q×Fb. Since the interconnection takes place through the
boundary of the system, the space of shared flow and effort variables is Fb,
Eb respectively. We define the interconnection constraints as follows

fb = −f ′
b ∈ Fb

eb = e′b ∈ Eb.
(3.16)

The composition D1 ‖ D2 is then defined as

D1 ‖ D2 := {(fp1
, fq1

, ep1
, eq1

, fp2
, fq2

, ep2
, eq2

) ∈ Fp,q × Ep,q ×F ′
p,q × E ′

p,q |

∃(fb, eb) ∈ Fb × Eb s.t.

(fp, fq, ep, eq, fb, eb) ∈ D1 and (f ′
p, f

′
q, e

′
p, e

′
q,−fb, eb) ∈ D2.

This yields the following bilinear form on Fp,q × Ep,q ×F ′
p,q × E ′

p,q :

<< (fa
p1

, fa
q1

, ea
p1

, ea
q1

, fa
p2

, fa
q2

, ea
p2

, ea
q2

), (f b
p1

, f b
q1

, eb
p1

, eb
q1

, f b
p2

, f b
q2

, eb
p2

, eb
q2

) >>
:=
∫

Z1
[eb

p1
∧ fa

p1
+ ea

p1
∧ f b

p1
+ eb

q1
∧ fa

q1
+ ea

q1
∧ f b

q1
]

+
∫

Z2
[eb

p2
∧ fa

p2
+ ea

p2
∧ f b

p2
+ eb

q2
∧ fa

q2
+ ea

q2
∧ f b

q2
].

(3.17)

Proposition 3.10. Let D1 and D2 be Stokes-Dirac structures as above defined re-
spectively with respect to Fp,q ×Ep,q ×Fb ×Eb and F ′

p,q ×E ′
p,q ×Fb ×Eb. Then the

composition D = D1 ‖ D2 is a Dirac structure defined with respect to the bilinear
form on Fp,q × Ep,q ×F ′

p,q × E ′
p,q given by (3.17)

Proof. The proof again follows the same procedure as in the above proposi-
tion and hence we omit it here.

Remark 3.11. One must observe here that the interconnection constraints
(3.16) involve whole of the boundary. On the other hand there can be cases
where we the interconnection takes place through a part of the boundary. In
cases such as this the interconnection constraints and the bilinear form would
vary accordingly.

Example 3.12 (Interconnections of cross canals). This is a typical exam-
ple of interconnections of infinite-dimensional systems through a part of the
boundary. Consider interconnection of three canals as shown in the Figure
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Figure 3.4: Interconnections of cross canals

3.4. The dynamics of each of the canals are given by the shallow water equa-
tions given by (2.64)

[
− ∂

∂t
hi(z, t)

− ∂
∂t

ui(z, t)

]

=

[
0 d
d 0

] [
1
2 (∗ui)(∗ui) + g ∗ hi

∗hi ∗ ui

]

; i = 1, 2, 3

together with the boundary variables

fbi = ∗hi ∗ ui |b= h̃ũ |b
ebi = 1

2 (∗ui)(∗ui) + g ∗ hi |b=
1
2 ũ2 + gh̃ |b .

Denote by f0i, e0i, i = 1, 2, 3 the boundary flows and efforts at the intersection
of the three canals: The interconnection constraints are

e01 = e02 = e03

f01 + f02 + (−f03) = 0,
(3.18)

or written out

1
2 (ũ2

01 + gh̃01) = 1
2 (ũ2

01 + gh̃01) = 1
2 (ũ2

01 + gh̃01)

h̃01ũ01 + h̃02ũ02 + (−h̃03ũ03) = 0.

(3.19)

It can easily be seen that the interconnection constraints (3.18) are indeed
power-conserving and thus the interconnected system again defines a port-
Hamiltonian system. Physically these constraints mean that the mass is con-
served at the intersection of the canals and that the Bernoulli function remains
the same.
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Remark 3.13. In case we have an additional velocity component in the canals
as in (2.66), then at the intersection the constraints on the boundary term aris-
ing due to the additional velocity component would be

ṽ01 = ṽ02 = ṽ03.

This justifies the reason for considering ∗v = ṽ as the boundary variables
instead of hv as stated in Equation (2.70) of Proposition 2.18.

Remark 3.14. If we consider infinite-dimensional Dirac structures defined on
Hilbert spaces, then the compositional property is not immediate, as shown
in [22, 17]. Necessary and sufficient conditions have been derived in [22] for
the composition of two or more Dirac structures on Hilbert spaces to again de-
fine a Dirac structure. The infinite-dimensional Dirac structures we focus on
here are of a particular kind, which we call the Stokes-Dirac structure, which
are defined on spaces of differential forms. We have shown that a power-
conserving interconnection of a number of Stokes-Dirac structures is again a
Stokes-Dirac structure. Now, to relate this to the Hilbert space setting, our
conjecture would be that composition of Stokes-Dirac structure would satisfy
the necessary and sufficient conditions as derived in [22] for the composition
to again define a Stokes-Dirac structure.

3.3 Mixed port-Hamiltonian systems

Mixed port-Hamiltonian systems arise by interconnections of finite-dimen-
sional port-Hamiltonian systems with infinite-dimensional port-Hamiltonian
systems (see also [24, 51]). We here study interconnections of such systems
and show that the composition of their Dirac structures is again a Dirac struc-
ture, hence the interconnected system is again a port-Hamiltonian system.
Typical example of such an interconnection is a power-drive consisting of a
power converter, transmission line and electrical machine.

3.3.1 Interconnection of mixed finite and infinite-dimensio nal
systems

We consider the composition of two Dirac structures, without dissipation (de-
noted by D1 and D2 respectively) interconnected to each other via a Stokes-
Dirac structure, also without dissipation (denoted D∞). We consider here the
simple case p = q = n = 1 throughout, for the Stokes-Dirac structure (though
it can be extended, if not easily, to the higher dimensional case).

First we consider the composition of the two Dirac structures D1 and D∞.
Consider D1 on the product space F1×F0 of two linear spaces F1 and F0,
and the Stokes-Dirac structure D∞ on the product space F0×Fp,q×F l. F0

and Fl are linear spaces (which represent the space of boundary variables of
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Figure 3.5: D1 ‖ D∞ ‖ D2

the Stokes-Dirac structure) and Fp,q is an infinite-dimensional function space
with p, q representing the two different physical energy domains interacting
with each other. The linear space F0 is the space of shared flow variables and
its dual F∗

0 , the space of shared effort variables between D1 and D∞. Next
consider the composition of D∞ and D2. Considering D2 as defined on the
product space Fl×F2 of two linear spaces, the linear space Fl is the space of
shared flow variables and its dual F∗

l is the space of shared effort variables
between D2 and D∞.

We define the two interconnections as follows: The interconnection of the
two Dirac structures D1 and D∞ is defined as

D1‖D∞ :=
{
f1, e1, fp, fq, ep, eq, fl, el) ∈ F1×F∗

1×Fp,q×F∗
p,q×F l×F∗

l |

∃(f0, e0) ∈ F0×F∗
0 s.t

(f1, e1, f0.e0) ∈ D1 and (−f0, e0, fp, fq.ep, eq, fl, el) ∈ D∞}.

Similarly, the interconnection of D∞ and D2 is defined as

D∞‖D2 :=
{
−f0, e0, fp, fq, ep, eq, f2, e2) ∈ F0×F∗

0×Fp,q×F∗
p,q×F2×F∗

2 |

∃(fl, el) ∈ Fl×F∗
l s.t

(−f0, e0, fp, fq.ep, eq, fl, el) ∈ D∞ and (−fl, el, f2, e2) ∈ D2}.

Hence we can define the total interconnection of D1,D∞ and D2 as (also see
Figure(3.5))

D1‖D∞‖ D2 :=
{
(f1, e1, fp, fq, ep, eq, f2, e2) ∈ F1×F∗

1×Fp,q×F∗
p,q×F2×F∗

2 |

∃(f0, e0) ∈ F0×F∗
0 s.t (f1, e1, f0.e0) ∈ D1 ,(−f0, e0, fp, fq.ep, eq, fl, el) ∈ D∞,

∃(fl, el) ∈ Fl×F∗
l s.t (−f0, e0, fp, fq.ep, eq, fl, el) ∈ D∞, (−fl, el, f2.e2) ∈ D2}.

(3.20)
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This yields the following bilinear form on F1×F∗
1 ×Fp,q×F∗

p,q ×F2×F∗
2 :

� (fa
1 , fa

p , fa
q , fa

2 , ea
1 , e

a
p, ea

q , e
a
2), (f

b
1 , f b

p , f b
q , f b

2 , eb
1, e

b
p, e

b
q, e

b
2) �

:=< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < ea

2 |f
b
2 > + < eb

2|f
a
2 >

+

∫

Z

[
ea

p ∧ f b
p + eb

p ∧ fa
p + eb

q ∧ fa
q + ea

q ∧ f b
q

]
. (3.21)

Theorem 3.15. Let D1, D2 and D∞ be Dirac structures as said above (defined re-
spectively with respect to F1×F∗

1 × F0×F∗
0, Fl×F∗

l × F2×F∗
2 and F0×F∗

0 ×
Fp,q×F∗

p,q × Fl×F∗
l ). Then D = D1‖D∞‖ D2 is a Dirac structure defined with

respect to the bilinear form on F1×F∗
1 ×Fp,q×F∗

p,q ×F2×F∗
2 given by (3.21).

We use the following facts for the proof (as we know that D1, D2 and D∞

individually are Dirac structures). On F1 ×F∗
1 ×F0 ×F∗

0 the bilinear form is
defined as

� (fa
1 , fa

0 , ea
1 , e

a
0), (f

b
1 , f b

0 , eb
1, e

b
0) �

:=< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < eb

0|f
a
0 > + < ea

0 |f
b
0 > . (3.22)

and D1= D⊥
1 with respect to the bilinear form as in (3.22).

Similarly on F2 ×F∗
2 ×Fl ×F∗

l the bilinear form is defined as

� (−fa
l , ea

l , fa
2 , ea

2), (−f b
l , eb

l , f
b
2 , eb

2) �

:=< eb
2|f

a
2 > + < ea

2 |f
b
2 > − < eb

l |f
a
l > − < ea

l |f
b
l > (3.23)

and D2= D⊥
2 with respect to the bilinear form as in (3.23).

On F0×F∗
0 ×Fp,q ×F∗

p,q ×Fl×F∗
l the bilinear form takes the following form

� (fa
p , fa

q , fa
b , ea

p, ea
q , e

a
b ), (f b

p , f b
q , f b

b , eb
p, e

b
q, e

b
b) �

:=

∫

Z

[
ea

p ∧ f b
p + eb

p ∧ fa
p + eb

q ∧ fa
q + ea

q ∧ f b
q

]
+

[
< ea

l |f
b
l > + < eb

l |f
a
l > − < ea

0 |f
b
0 > + < eb

0|f
a
0 >

]
(3.24)

and D∞= D⊥
∞ with respect to the bilinear form as in (3.24).

Proof. (i)D ⊂ D⊥: Let (fa
1 , fa

p , fa
q , fa

2 , ea
1 , e

a
p, e

a
q , ea

2) ∈ D and consider any other

(f b
1 , f b

p , f b
q , f b

2 , eb
1, e

b
p, e

b
q, e

b
2) ∈ D and the bilinear form on F1×F∗

1×Fp,q×F∗
p,q×

F2×F∗
2 as in (3.21). Then

∃ (fa
0 , ea

0), (fa
l , ea

l ) s.t (fa
1 , ea

1 , f
a
0 , ea

0) ∈ D1, (−fa
0 , ea

0, f
a
p , fa

q , ea
p, e

a
q , fa

l , ea
l ) ∈

D∞ and (−fa
l , ea

l , f
a
2 , ea

2) ∈ D2 and
∃ (f b

0 , eb
0), (f b

l , eb
l ) s.t (f b

1 , eb
1, f

b
0 , eb

0) ∈ D1, (−f b
0 , eb

0, f
b
p , f b

q , eb
p, e

b
q, f

b
l , eb

l ) ∈ D∞

59



3 Interconnections of port-Hamiltonian Systems

and (−f b
l , eb

l , f
b
2 , eb

2) ∈ D2.
Since D∞ is a Dirac structure with respect to (3.24)

∫

Z

[
ea

p ∧ f b
p + eb

p ∧ fa
p + eb

q ∧ fa
q + ea

q ∧ f b
q

]
=

− < ea
l |f

b
l > − < eb

l |f
a
l > + < ea

0|f
b
0 > + < eb

0|f
a
0 > . (3.25)

Substituting (3.25) in (3.21) and using the fact that the bilinear from (3.22) is
zero on D1 and (3.23) is zero on D2, we get

< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < eb

2|f
a
2 > + < ea

2 |f
b
2 >

+

∫

z

[
ea

p ∧ f b
p + eb

p ∧ fa
p + eb

q ∧ fa
q + ea

q ∧ f b
q

]
= 0.

and hence D ⊂ D⊥

(ii) D⊥ ⊂ D: We know that the flow and effort variables of D∞ are related as

D∞ ,

{

(f, e) ∈ F × F∗ |

[
fp

fq

]

=

[
0 d
d 0

] [
ep

eq

]

,

[
fb

eb

]

=

[
0 −1
1 0

] [
ep|∂Z

eq|∂Z

]}

.

(3.26)
Let (fa

1 , fa
p , fa

q , fa
2 , ea

1, e
a
p, ea

q , ea
2) ∈ D⊥, then for all (f b

1 , f b
p , f b

q , f b
2 , eb

1, e
b
p, e

b
q, e

b
2) ∈

D the right side of Equation (3.21) is zero.
Now consider the vectors (f b

1 , f b
p , f b

q , f b
2 , eb

1, e
b
p, e

b
q, e

b
2) ∈ D with f b

1 = f b
2 =

eb
1 = eb

2 = 0 and also f b
0 = eb

0 = f b
l = eb

l = 0. Then from (3.26) and (3.21) we
have ∫

Z

[
ea

p ∧ deb
q + eb

p ∧ fa
p + eb

q ∧ fa
q + ea

q ∧ deb
p

]
= 0. (3.27)

This implies (see the proof of Theorem 2.1 in [61])

fa
p = dea

q and fa
q = dea

p. (3.28)

Substituting (3.28) in (3.21) we have

< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < eb

2|f
a
2 > + < ea

2|f
b
2 > +

∫

Z

[
ea

p ∧ deb
q + eb

p ∧ dea
q + eb

q ∧ dea
p + ea

q ∧ deb
p

]
= 0.

This yields by Stokes’ theorem

< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < eb

2|f
a
2 > + < ea

2 |f
b
2 >

+
[
< ea

p|e
b
q > + < eb

p|e
a
q >
]
|l0= 0,

for all ep, eq . Expanding the above and substituting for the boundary condi-
tions we get

< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < ea

0 | f b
0 > + < eb

0 | fa
0 > +

< eb
2|f

a
2 > + < ea

2 |f
b
2 > − < ea

l | f b
l > − < eb

l | fa
l >= 0. (3.29)
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Since (f b
0 , eb

0, f
b
l , eb

l ) are arbitrary and with f b
l = eb

l = f b
2 = eb

2 = 0 the above
equation reduces to

< eb
1|f

a
1 > + < ea

1 |f
b
1 > + < ea

0 | f b
0 > + < eb

0 | fa
0 >= 0,

which implies that (fa
1 , ea

1 , f
a
0 , ea

0) ∈ D1.
With similar arguments (with f b

l = eb
l = f b

1 = eb
1 = 0) Equation (3.29) reduces

to

< eb
2|f

a
2 > + < ea

2 |f
b
2 > − < ea

l | f b
l > − < eb

l | fa
l >= 0,

implying (−fa
l , ea

l , fa
2 , ea

2) ∈ D2 and hence D⊥⊂ D, completing the proof.

Remark 3.16. Similarly we can also study interconnections of mixed finite
and infinite-dimensional systems where we also have dissipation in the re-
spective subsystems, which would again result in a port-Hamiltonian system
with dissipation. The following corollary answers this problem.

Corollary 3.17. Let D1 ‖ R1, D2 ‖ R2 and D∞ ‖ R∞ be Dirac structures as
defined above interconnected to their respective resistive relations, then the composed
system will again have a structure of the form D ‖ R with the property that (D ‖
R)⊥ = D ‖ −R where −R is a pseudo resistive relation (corresponding to negative
resistance). Here D is the composition of the individual Dirac structures and R is
the composition of the individual resistances of the subsystems.

Example 3.18. We consider a port-Hamiltonian plant described by

fp = −[J(x) − R(x)]ep − g(x)f

e = gT (x)ep,
(3.30)

interconnected to a port-Hamiltonian controller described by

fc = −[Jc(ξ) − Rc(ξ)]ec − gc(ξ)f
′

e′ = gT
c (ξ)ec,

through a transmission line which is an infinite-dimensional system described
by (2.55). The interconnection constraints are of the form (see Figure 3.6)

e′ = yc = f0, f = uc = e0,

e = yp = el, f ′ = up = −fl.
(3.31)
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Figure 3.6: Interconnection constraints

With the above interconnection constraints the closed-loop dynamics can be
written as






fp

fc

fq

fφ







=







−[J(x) − R(x)] 0 0 −g(x)· |l
0 −[Jc(ξ) − Rc(ξ)] −gc(ξ)· |0 0
0 0 0 d
0 0 d 0













ep

ec

eq

eφ







[
eql

eφ0

]

=

[
gT (x)ep

−gc(ξ)ec

]

.

(3.32)
In energy variables the overall dynamics is given as






ẋ

ξ̇
∂
∂t

q(z, t)
∂
∂t

φ(z, t)







=







[J(x) − R(x)] 0 0 −g(x)· |l
0 [Jc(ξ) − Rc(ξ)] gc(ξ)· |0 0
0 0 0 d
0 0 d 0













∂
∂x

H(x)
∂
∂ξ

H(ξ)

δqH(q̄)
δφH(q̄)







[
δqH(q̄) |l
δφH(q̄) |0

]

=

[
gT (x) ∂

∂x
H(x)

−gc(ξ)
∂
∂ξ

H(ξ)

]

.

(3.33)

It immediately follows that the above system is in the port-Hamiltonian form.
The closed-loop energy defined in the extended state space χ = [x, ξ, qE(z, t), qM (z, t)]T

is given by
Hcl(χ) = H(x) + Hc(ξ) + H(q̄),

with energy rate

Ḣcl = −
∂T H

∂x
(x)R(x)

∂T H

∂x
(x) −

∂T Hc

∂ξ
(ξ)Rc(ξ)

∂Hc

∂ξ
(ξ).
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Interconnections in a higher dimensional case

In the previous section on the interconnection of infinite-dimensional sys-
tems to finite-dimensional systems through the boundary of the infinite-di-
mensional system, we considered the simple case where p = q = n = 1 for
the infinite-dimensional system. This corresponds to the case of a distributed
system with a 1-D spatial domain. In this section we highlight briefly on
how this could be generalized to an infinite-dimensional system with an n-
dimensional spatial domain and how these systems could be interconnected
through the boundary to finite-dimensional systems.

Consider the dynamics of then 2-D shallow water equations which are
given by

∂th̃ + ∂z1
(h̃ũ) + ∂z2

(h̃ṽ) = 0

∂tũ + ∂z1
(1
2 ũ2 + gh̃) + ṽ∂z2

ũ = 0

∂tṽ + ũ∂z1
ṽ + ∂z2

(1
2 ṽ2 + gh̃) = 0.

The formulation of the above equations as a port-Hamiltonian system is given
as follows. Let W ⊂ R

2 be a given domain over which the water flows.
We assume the existence of a Riemannian metric < · > on W , usually the
standard Euclidean metric on R

2. Let Z ⊂ W be any two-dimensional mani-

fold with boundary ∂Z. We identify the height h(z1, z2, t) = h̃(z1, z2, t)dz1dz2

(which represents the mass density) with a two-form on Z, that is with ele-
ments in Ω2(Z). Furthermore we identify the Eulerian vector field V (z1, z2, t)
with a one-form on Z, that is, with an element in Ω1(Z), i.e. V (z1, z2, t) =
u(z1, z2, t)dz1 + v(z1, z2, t)dz2. The spaces Fp,q and Ep,q are given by

Fp,q = Ω2(Z) × Ω1(Z) × Ω0(∂Z)

Ep,q = Ω0(Z) × Ω1(Z) × Ω1(∂Z),

with the corresponding Stokes-Dirac structure D on Fp,q ×Ep,q. We now have
the following modified Stokes-Dirac structure

D := {(fh, fV , fb, eh, eV , eb) ∈ Fp,q × Ep,q |
[
fh

fV

]

=

[
deV

deh + 1
∗h

((∗dV ) ∧ (∗eV ))

]

;

[
fb

eb

] [
eh |∂Z

−eV |∂Z

]

}.

In terms of the 2 − d shallow water equations would corresponds to

fh = −
∂

∂t
h(z, t), eh = δhH =

1

2
(< V ], V ] > +g(∗h))

fV = −
∂

∂t
V (z, t), ev = δV H = (∗h)(∗V ),
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Figure 3.7: The 2-D water flow

together with the boundary variables fb = δhH |∂Z called the Bernoulli func-
tion and eb = δV H |∂Z denoting the boundary mass flow.

Consider the interconnection of this infinite-dimensional system, with fi-
nite-dimensional systems through its boundaries, see Figure 3.7. The finite-
dimensional systems can be thought of water reservoirs given in port-Ham-
iltonian form as

ẋi = ui

yi =
∂Hi(xi)

∂xi

; i = 1, 2.

The interconnection constraints at the gates would then be as follows

u0 =
∫

eb0 =
∫

(∗h ∗ V ) |0, u1 =
∫

eb1 =
∫
(∗h ∗ V ) |1,

y0 = −f0 = 1
2 (< V ], V ] > +g(∗h)) |0, y1 = −f1 = 1

2 (< V ], V ] > +g(∗h)) |1 .

It can easily be seen that such interconnection constraints are indeed power-
conserving and the total interconnection is again a Dirac structure. Using sim-
ilar arguments we can generalize this to a infinite-dimensional system with a
n−dimensional spatial domain.

Consider an infinite-dimensional port-Hamiltonian system, defined with
respect to a Stokes-Dirac structure (2.46) defined on the product space Fp,q ×
Fb with port variables (fp, fq, ep, eq, fb, eb). Now consider interconnection of
this system with a finite-dimensional Dirac structure through the boundary.
The finite dimensional Dirac structure is defined on the product space F1×F ′

b

with port-variables (f1, e1, f
′
b, e

′
b). The following interconnection constraints

then define an interface between the boundary variables of the infinite-di-
mensional system and the port variables of the finite-dimensional system
which are available for interconnection.

e′b =
∫

∂Z
eb

f ′
b = fb.

(3.34)
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It can easily be seen that the interconnected system is again a port-Hamil-
tonian system and the composed Dirac structure is defined on the product
space Fp,q ×F1.

3.3.2 Interconnections of infinite-dimensional systems
through a distributed finite-dimensional system

So far we have studied interconnections of different types of systems namely,
interconnection of finite-dimensional systems with finite-dimensional sys-
tems and interconnections of infinite-dimensional systems with infinite-di-
mensional systems either through the spatial domain or through the bound-
ary. We have also seen interconnection of infinite-dimensional systems with
an n−dimensional spatial domain thorough the boundary with finite-dimen-
sional systems, the case which we call a mixed port-Hamiltonian system.
We now study a case of two infinite-dimensional systems interconnected to
each other through a finite-dimensional system and this interconnection takes
place through the spatial domains of the infinite-dimensional systems. To-
wards the end we also present a simple example to further motivate this case.

Let D∞1
be a Stokes-Dirac structure which is defined on the product space

Fp,q ×Fb ×F1, with the elements of the Dirac structure being
(fp1

, fq1
, ep1

, eq1
, fb1 , eb1 , f1, e1), the variables (f1, e1) corresponding to the fl-

ows and efforts of an open port in the spatial domain of the system. Similarly
consider another Stokes-Dirac structure denoted by D∞2

defined on the prod-
uct space F ′

p,q ×F ′
b ×F2, the elements of the Dirac structure being

(fp2
, fq2

, ep2
, eq2

, fb2 , eb2 , f2, e2) again (f2, e2) corresponding to the flow and
effort arising due to an open port in the spatial domain of D∞2

. Lastly, let D
be a finite-dimensional Dirac structure defined on the space Fs×Es×F1×E1×
F2 × E2, with the elements of the Dirac structure being (fs, es, f

′
1, e

′
1, f

′
2, e

′
2),

with (fs, es) corresponding to the flow and effort variables of the energy stor-
ing elements and (f ′

1, e
′
1, f

′
2, e

′
2) corresponding to the ports available for inter-

connection. The space F1 ×E1 is the space of shared flow and effort variables
between D∞1

and D and the space F2 × E2 is the space of shared flow and
effort variables between D∞2

and D

We now define the interconnection constraints between D∞1
and D as fol-

lows

D∞1
‖ D := {fp1

, fq1
, ep1

, eq1
, fb1 , eb1 , fs, es) ∈ Fp,q × Ep,q ×Fb × Eb ×Fs × Es|

∃(f1, e1) ∈ F1 × E1 s.t.

(fp1
, fq1

, ep1
, eq1

, fb1 , eb1 , f1, e1) ∈ D∞1
, (fq, eq,−f1, e1, f2, e2) ∈ D}.
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Figure 3.8: D∞1
‖ D ‖ D∞2

Similarly we define the interconnection between D∞2
and D as follows

D∞2
‖ D := {fp2

, fq2
, ep2

, eq2
, fb2 , eb2 , fs, es) ∈ F ′

p,q × E ′
p,q ×F ′

b × E ′
b ×Fs × Es |

∃(f2, e2) ∈ F2 × E2 s.t.

(fp2
, fq2

, ep2
, eq2

, fb2 , eb2 , f2, e2) ∈ D∞2
, (fs, es, f1, e1,−f2, e2) ∈ D.

We can then define the total interconnection as follows

D∞1
‖ D ‖ D∞2

:= {(fp1
, fq1

, ep1
, eq1

, fb1 , eb1 , fs, esfp2
, fq2

, ep2
, eq2

, fb2 , eb2)
∈ Fp,q × Ep,q ×Fb × Eb ×Fs × Es ×F ′

p,q × E ′
p,q ×F ′

b × E ′
b |

∃(f1, e1) ∈ F1 × E1 s.t.(fp1
, fq1

, ep1
, eq1

, fb1 , eb1 , f1, e1) ∈ D∞1

and (fq, eq,−f1, e1, f2, e2) ∈ D;

and ∃(f2, e2) ∈ F2 × E2 s.t. (fp2
, fq2

, ep2
, eq2

, fb2 , eb2 , f2, e2) ∈ D∞2

and (fs, es, f1, e1,−f2, e2) ∈ D}.

This yields a bilinear form on Fp,q×Ep,q×Fb×Eb×Fs×Es×F ′
p,q×E ′

p,q×F ′
b×E ′

b :

<< (fa
p1

, fa
q1

, ea
p1

, ea
q1

, fa
b1

, ea
b1

, fa
s , ea

s , fa
p2

, fa
q2

, ea
p2

, ea
q2

, fa
b2

, ea
b2

),
(f b

p1
, f b

q1
, eb

p1
, eb

q1
, f b

b1
, eb

b1
, f b

s , eb
sf

b
p2

, f b
q2

, eb
p2

, eb
q2

, f b
b2

, eb
b2

) >>

:=
∫

Z1
[eb

p1
∧ fa

p1
+ ea

p1
∧ f b

p1
+ eb

q1
∧ fa

q1
+ ea

q1
∧ f b

q1
]+

∫

Z2
[eb

p2
∧ fa

p2
+ ea

p2
∧ f b

p2
+ eb

q2
∧ fa

q2
+ ea

q2
∧ f b

q2
]

+
∫

∂Z1
[eb

b1
∧ fa

b1
+ ea

b1
∧ f b

b1
] +
∫

∂Z2
[eb

b2
∧ fa

b2 + ea
b2

∧ f b
b2

]

+ < eb
s | fa

s > + < ea
s | f b

s > .

(3.35)

We then state the following proposition:

Proposition 3.19. Let D∞1
, D∞2

and D be Dirac structures as stated above, de-
fined respectively with respect to Fp,q × Ep,q × Fb × Eb × F1 × E1, F ′

p,q × E ′
p,q ×
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3.3 Mixed port-Hamiltonian systems

F ′
b ×E ′

b ×F2 ×E2 and Fs ×Es ×F1 ×E1 ×F2 ×E2. The D = D∞1
‖ D ‖ D∞2

is
a Dirac structure with respect to the bilinear form on Fp,q × Ep,q ×Fb × Eb ×Fs ×
Es ×F ′

p,q × E ′
p,q ×F ′

b × E ′
b given by (3.35)

Proof. The proof follows the same arguments as in the proof of the Theorem
3.15 and hence is omitted.

To illustrate the above interconnection we present an example here of con-
necting two vibrating strings in parallel through a distributed spring.

Example: The Coupled wave equations

Consider two strings in parallel connected through a distributed spring. The
two strings are modeled by the 1 − d wave equation

µiüi + Ei∆ui = 0, i = 1, 2

where µi is the mass density of each string and Ei is the Young’s modulus.
This equation models the vertical movement u(z, t) of the vibrating mem-
brane. The port-Hamiltonian model of each of the system with external forces
through the spatial domain is given as

[
fεi

fρi

]

=

[
0 −d
d 0

] [
eεi

eρi

]

+

[
0
1

]

Fi(z, t)

Ei =
[
0 −1

]

[
∂Hi

∂εi
∂Hi

∂ρi

]

;

[
vbi

σbi

]

=

[
0 1
1 0

] [
eεi

eρi

]∣
∣
∣
∣
∂Z

.

The energy variables are the 1−form kinetic momentum ρi(z, t) and the 1−
form elastic strain εi(z, t)(= ∂ui

∂z
dz). The flows are then given by fεi

= ε̇i and

fρi
= ρ̇i. The co-energy variables are then the 0−form velocity vi(z, t) = ∂Hi

∂ρi

denoted by eρi
and the 0− form stress σi(z, ) = ∂Hi

∂εi
, which is denoted by eεi.

Fi(z, t) is the external force acting on the spring through the spatial domain of
the system, Ei the corresponding output (the velocity), Hi is the Hamiltonian
density defined as

Hi(ρi, εi) =
1

2
(εi ∧ σi + ρi ∧ vi),

where ∧ is the wedge product of differential forms, the co-energy variables σ
and v are related to the energy variables by the constitutive relations

σi = Ei ∗ εi, vi = 1
µi

∗ ρi .

The port-Hamiltonian model of the spring is given as follows. Let q = x1−x2

be the elongation of the spring. At equilibrium, the sum of the forces is zero,
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3 Interconnections of port-Hamiltonian Systems

�

�

�

�

i.e., f1 + f2 = 0. The force and the displacement relationship is given by
f1 = k(x1 − x2), where k is the spring constant and the potential energy of
the spring is given by

Hs =
1

2
kq2,

writing this in the port-Hamiltonian form, i.e. ẋ = J ∂H
∂x

+ gu and y = gT ∂H
∂x

,
gives

q̇ =
[
1 −1

]
[
v1

v2

]

[
f1

f2

]

=

[
k
−k

]

q.

where J = 0, g = [1 −1], y = [f1 f2]
T ∂H

∂x
= [kq −kq]T and u = [v1 v2].

Next we study the interconnections of the two strings through the spring
and see that the resulting system is again a port-Hamiltonian system. The
distributed interconnection constraints are as follows

Fi = −fi, Ei = vi, i = 1, 2 .

The composed system can then be written as follows








fε1

fρ1

fs

fε2

fρ2









=









0 d 0 0 0
−d 0 0 0 0
0 1 0 0 −1
0 0 0 0 d
0 0 0 −d 0

















eε1

eρ1

es

eε2

eρ2









+









0 0
−1 0
0 0
0 0
0 −1









[
f1

f2

]

[
e1

e2

]

=

[
0 −1 0 0 0
0 0 0 0 −1

]









eε1

eρ1

es

eε2

eρ2









, (3.36)
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3.3 Mixed port-Hamiltonian systems

together with the boundary conditions on the two strings given by

[
vbi

σbi

]

=

[
0 1
1 0

] [
∂Hi

∂ε
∂Hi

∂ρ

]

; i = 1, 2.

It can easily be seen that the interconnected system is again a port-Hamilto-
nian system, with the overall dynamics of the composed system given by the
above equations. The total energy of the system is given by

H =
1

2

∫

Z

[
(ε1 ∧ σ1 + ρ1 ∧ v1) + (ε2 ∧ σ2 + ρ2 ∧ v2) + kq2

]
.
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4

Casimirs and its Implications on
Control

”The greatest challenge to any thinker is stating the problem in a way
that will allow a solution.” - Bertrand Russell.

In the previous chapter we have seen how a power-conserving interconnec-
tion of two or more Dirac structures with partially shared variables is again a
Dirac structure. This in turn means that a power-conserving interconnection
of a number of port-Hamiltonian system is again a port-Hamiltonian sys-
tem. The Dirac structure of the composed system is the composition of Dirac
structures of the constituent parts, Hamiltonian being the sum of individual
Hamiltonians and the total resistive relation being the composition of the in-
dividual resistive relations. In this chapter we focus on how to exploit these
properties for further analysis of port-Hamiltonian systems.

In particular, we investigate which closed-loop port-Hamiltonian systems
can be achieved by interconnecting a given plant port-Hamiltonian system P
with a to-be-designed controller port-Hamiltonian system C. This is quite im-
portant from the point of view of the theory of control by interconnection for
stabilizing port-Hamiltonian systems, which relies on the generation of con-
served quantities, called Casimirs, for the closed-loop system. In this chapter
we address the question of achievable Dirac structures for finite-dimensional
systems, infinite-dimensional systems defined with respect to a Stokes-Dirac
structure and also the case of mixed finite and infinite-dimensional systems.
We also characterize the set of achievable Casimirs for the closed-loop system.
In the case of finite-dimensional systems we see that this characterization of
the set of achievable Casimirs in terms of plant state enables us to determine,
without a priori knowledge of the controller system, whether or not there
exist Casimirs for the closed-loop system and hence the applicability of the
control by interconnection (or the Energy-Casimir) method. We also focus
on the precise role of energy dissipation in the analysis of port-Hamiltonian
systems and in the case of finite-dimensional systems with dissipation we see
that, under certain conditions, if a function is a Casimir for a given resistive
relation it is a Casimir for all resistive relations.
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4 Casimirs and its Implications on Control

4.1 Casimirs

Casimirs are functions that are conserved quantities of the system for every
Hamiltonian (see [61, 7, 58] for example), and they are completely character-
ized by the Dirac structures of the port-Hamiltonian systems. The existence of
such functions has immediate consequences for stability analysis of systems.
Suppose we want to stabilize a plant port-Hamiltonian system around a de-
sired equilibrium x∗, and we would like to design a controller port-Hamilto-
nian system such that the closed-loop system has the desired stability prop-
erties. The closed-loop system then satisfies

d

dt
(HP + HC) ≤ 0.

In case x∗ is not a minimum for Hp, then a possible strategy is that we gen-
erate Casimir functions C(x, ξ) for the closed-loop system by appropriately
choosing the controller port-Hamiltonian system. The resulting Lyapunov
function is then given by the sum of the plant and controller Hamiltonians
and the corresponding Casimir function,

V (x, ξ) := HP (x) + HC(ξ) + C(x, ξ),

where HP (x) is the plant Hamiltonian and HC(ξ) the controller Hamiltonian.
The Lyapunov function should be constructed such that it has a minimum at
(x∗, ξ∗), with ξ∗ still to be chosen. This strategy is based on finding all the
achievable Casimirs of the closed-loop system. Since the closed-loop Casi-
mirs are based on the closed-loop Dirac structures, the problem reduces to
finding all the closed-loop Dirac structures.

A Casimir function C : X → R for a port-Hamiltonian system is a function
which is constant along all the trajectories of the port-Hamiltonian system
irrespective of the Hamiltonian. Consider, in the case of two external ports,
the following subspace

G1 := {f ∈ F | ∃e ∈ F∗ s.t (f, e) ∈ D}.

A function C : X → R is a Casimir function if dC
dt

(x(t)) = ∂T C
∂x

(x(t))ẋ(t) = 0 for
all ẋ(t) ∈ G1. Hence C : X → R is a Casimir function for the port-Hamiltonian
system if and only if

∂C

∂x
(x) ∈ G⊥

1 .

Geometrically this can be formulated by defining the following subspace of
the dual space of efforts

P0 = {e ∈ F∗ | (0, e) ∈ D}.

It can easily be seen that G⊥
1 = P0 where ⊥ denotes the orthogonal comple-

ment with respect to the duality product <|> . Hence C is a Casimir function
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4.2 Achievable Casimirs for finite-dimensional systems

if and only if dC
dt

(x) ∈ P0. In short we can say that a Casimir function for a
port-Hamiltonian system is any function C : X → R such that the Casimir
gradients satisfy

(0, e) ∈ D. (4.1)

In case of a non-autonomous system, where now the elements of the Dirac
structure are (f, e, f ′, e′) ∈ D, with (f ′, e′) connected to the control ports,
which are accessible for the controller interaction, a Casimir is a function
C : X → R, such that its gradient e = ∂C

∂x
now satisfies

(0, e, fc, ec) ∈ D, (4.2)

for some fc, ec. This will imply that no longer dC
dt

= 0, but will depend on the
variables at the control ports. Indeed, from (4.2) we have that

(0,
∂C

∂x
, fc, ec) ∈ D = D⊥.

This implies that

−
∂C

∂x
ẋ + 0.es + fce

′ + ecf
′ = 0,

for all (−ẋ, es, f
′, e′) ∈ D. This means that

dC

dt
= fce

′ + ecf
′,

and hence dC
dt

is a linear function of f ′ and e′.

4.2 Achievable Casimirs for finite-dimensional
systems

In this section we first investigate what are the achievable Dirac structures
with dissipation of the closed-loop system. That is, given the Dirac structure
with dissipation DP ‖ RP of the plant system P and the to-be-designed Dirac
structure with dissipation DC ‖ RC of the controller system C, what are the
achievable Dirac structures (DP ‖ RP ‖ DC ‖ RC)? Here ‖ denotes the
composition of various structures as defined in the previous chapter. To study
this problem we first study the problem of achievable Dirac structures and
similarly achievable resistive relations and then combine these two results.

4.2.1 Achievable Dirac structures

Proposition 4.1. [7] Consider a (given) plant Dirac structure DP with port vari-
ables (f1, e1, f2, e2), and a desired Dirac structure D with port variables (f1, e1, f3, e3).
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PD *
PD D

1f

1e

f

e

*f

*e

*
1f

*
1e

'
1f

'
1e 2e

2f

Figure 4.1: D = DP ‖ D∗
P ‖ D

Then there exists a controller Dirac structure DC such that D = DP ‖ DC if and
only if the following two equivalent conditions are satisfied

D0
P ⊂ D0 (4.3)

Dπ ⊂ Dπ
P , (4.4)

where







D0
P := {(f1, e1) | (f1, e1, 0, 0) ∈ DP }

Dπ
P := {(f1, e1) | ∃(f, e) : (f1, e1, f, e) ∈ DP }

D0 := {(f1, e1) | (f1, e1, 0, 0) ∈ D}

Dπ := {(f1, e1) | ∃(f2, e2) : (f1, e1, f2, e2) ∈ D}.

(4.5)

The following proof of Theorem 4.1 is based on the following ’copy’ (or
’internal model’) D∗

P of the plant Dirac structure DP :

D∗
P := {(f1, e1, f, e) | (−f1, e1,−f, e) ∈ DP }. (4.6)

It is easily seen that D∗
P is a Dirac structure if and only if DP is a Dirac struc-

ture.
Proof of Proposition 4.1. Necessity of (4.3, 4.4) is obvious. Sufficiency is
shown using the controller Dirac structure

DC := D∗
P ‖ D,

(see Figure 4.1).

To check that D ⊂ DP ‖ DC , consider (f1, e1, f2, e2) ∈ D. Because (f1, e1) ∈
Dπ , applying (4.4) yields that ∃(f, e) such that (f1, e1, f, e) ∈ DP . It follows
that (−f1, e1,−f, e) ∈ D∗

P . Recall now the following interconnection con-
straints in Figure 4.1

f = −f∗, e = e∗, f∗
1 = −f ′

1, e
∗
1 = e′1.

By taking (f ′
1, e

′
1) = (f1, e1) in Figure 4.1 it follows that (f1, e1, f2, e2) ∈ DP ‖

DC . Therefore, D ⊂ DP ‖ DC .
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4.2 Achievable Casimirs for finite-dimensional systems

To check that DP ‖ DC ⊂ D, consider (f1, e1, f2, e2) ∈ DP ‖ DC . Then there
exist f = −f∗, e = e∗, f∗

1 = −f ′
1, e

∗
1 = e′1 such that

(f1, e1, f, e) ∈ DP (4.7)

(f∗
1 , e∗1, f

∗, e∗) ∈ D∗
P ⇐⇒ (f ′

1, e
′
1, f, e) ∈ DP (4.8)

(f ′
1, e

′
1, f2, e2) ∈ D. (4.9)

Subtracting (4.8) from (4.7), making use of the linearity of DP , we get

(f1 − f ′
1, e1 − e′1, 0, 0) ∈ DP ⇐⇒ (f1 − f ′

1, e1 − e′1) ∈ D0
P . (4.10)

Using (4.10) and (4.3) we get

(f1 − f ′
1, e1 − e′1, 0, 0) ∈ D. (4.11)

Finally, adding (4.9) and (4.11), we obtain (f1, e1, f2, e2) ∈ D, and so DP ‖
DC ⊂ D.

Finally we show that conditions (4.3) and (4.4) are equivalent. In fact we
prove that

(D0)⊥ = Dπ ,

and the same for DP . Here, ⊥ denotes the orthogonal complement with re-
spect to the canonical bilinear form on F1 ×F∗

1 defined as

<< (fa
1 , ea

1), (f
b
1 , eb

1) >>:=< ea | f b > + < eb | fa >,

for (fa
1 , ea

1), (f
b
1 , eb

1) ∈ F1 × F∗
1 . Then since D0

P ⊂ D0 implies (D0)⊥ ⊂ (D0
P )⊥.

the equivalence between (4.3) and (4.4) is immediate.
In order to show (D0)⊥ = Dπ first take (f1, e1) ∈ (Dπ)⊥, implying that

<< (f1, e1), (f̃1, ẽ1) >>=< e1 | f̃1 > + < ẽ1 | f1 >= 0,

for all (f̃1, ẽ1) for which there exists (f̃2, ẽ2) such that (f̃1, ẽ1, f̃2, ẽ2) ∈ D.
This implies that (f1, e1, 0, 0) ∈ D⊥ = D and thus that (f1, e1) ∈ D0. Hence,
(Dπ)⊥ ⊂ D0 and thus (D0)⊥ = Dπ, implying that there exists (f2, e2) such
that (f1, e1, f2, e2) ∈ D = D⊥. Hence

< e1 | f̃1 > + < ẽ1 | f1 > + < e2 | f̃2 > + < ẽ2 | f2 >= 0,

for all (f̃1, ẽ1, f̃2, ẽ2) ∈ D, implying that < e1 | f̃1 > + < ẽ1 | f1 > for all

(f̃1, ẽ1, 0, 0) ∈ D and thus (f1, e1) ∈ (D0)⊥.

4.2.2 Achievable resistive relations

Similar analysis could also be done for resistive relation in which case we
formulate the problem as follows: We are given a R1 and the to-be-designed
R2, then what are the achievable resistive relations R1 ‖ R2?
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Proposition 4.2. Given a resistive relation R1 with port variables (fR1, eR1, f2, e2)
and a desired resistive relation R with port variables (fR1, eR1, fR3, eR3). Then there
exists an R2 such that R = R1 ‖ R2 if and only if the following two conditions are
satisfied

R0
1 ⊂ R0 (4.12)

Rπ ⊂ Rπ
1 , (4.13)

where

R0
1 := {(fR1, eR1) | (fR1, eR1, 0, 0) ∈ R1}

Rπ
1 := {(fR1, eR1) | ∃(f2, e2) s.t. (fR1, eR1, f2, e2) ∈ R1}

R0 := {(fR1, eR1) | (fR1, eR1, 0, 0) ∈ R}

Rπ := {(fR1, eR1) | ∃(fR3, eR3) s.t ((fR1, eR1, fR3, eR3) ∈ R)}.

Proof. We again follow the same proof as that of achievable Dirac structures,
we now define the ”copy ”R∗

1 of R1 as

R∗
1 := {(fR1, eR1, f2, e2) | (−fR1, eR1,−f2, e2) ∈ R1}.

Note that R∗
1 is not positive anymore, in fact is a pseudo resistive relation cor-

responding to negative resistance. Again its clear that R∗
1 is a pseudo resistive

relation if and only if R1 is a resistive relation, and by defining

R2 := R∗
1 ‖ R. (4.14)

Rest of the proof follows the same procedure as in (4.1) and hence we omit
the details here.

Remark 4.3. It should be noted here that the conditions (4.12) and (4.13) are
no longer equivalent as in the case of Dirac structures. This is due to the prop-
erty of the resistive relation that R⊥ = (−R), where again −R is a pseudo
resistive relation corresponding to negative resistance.

Remark 4.4. The resistive relation R2 is obtained by interconnection of a
pseudo resistive relation R∗

1 with a desired resistive relation R which is posi-
tive. At this point one might think that R2 might also be a pseudo resistive
relation. This need not necessarily be the case. For example consider a case
where R1 is 2 Ohm resistor and the desired R is of value 1 Ohm. Now this
can either be achieved by connecting a pseudo resistance of −1 Ohm in series
to R1, or a 2 Ohm resistance in Parallel. So our conjecture here is that, given a
R1 and a desired R, both satisfying the positivity conditions as in Proposition
3.3, then it is always possible to choose a R2 which is also positive. That is,
there always exists an R2 which is positive such that Proposition 4.2 is satis-
fied. One can also consider the following limiting case: Suppose we are given
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Figure 4.2: DR = DRP ‖ DR∗
P ‖ DR

a R1 which is of value n Ohms, and a desired R which is 0 Ohms.This can
be achieved by connecting an ”infinite”number of n Ohm resistors in parallel
with R1 or with a 0 Ohm resistor in parallel to R1. On the other hand given
a positive R1 and a desired resistive relation R which is a pseudo resistive
relation, then the R2 which achieves this is also pseudo in nature.

4.2.3 Achievable Dirac structures with dissipation

We now use the results in the previous two subsections to study the problem
of the achievable Dirac structures with dissipation for the closed loop system.
We formulate the problem as follows: Given a Dp with a Rp (i.e. a plant sys-
tem with dissipation) and a (to be designed) Dc with Rc (a controller system
with dissipation) , what are the achievable (Dp ‖ Rp) ‖ (Dc ‖ Rc). For ease
of notation we henceforth use DRp for (Dp ‖ Rp) and DRc for (Dc ‖ Rc).
Consider here the case where DRp is a given Dirac structure with dissipa-
tion (finite-dimensional), and DRc a to be designed controller Dirac structure
with dissipation. We investigate what are the achievable DRp ‖ DRc, the
closed-loop structures.

Theorem 4.5. Given a plant Dirac structure with dissipation DRP with port vari-
ables f1, e1, fR1, eR1, f, e and a desired Dirac structure with dissipation DR with
port-variables f1, e1, fR1, eR1, f2, e2, fR2, eR2. Here (f1, e1), (fR1, eR1) respectively
denote the flow and effort variables corresponding to the energy storing elements and
the energy dissipating elements of the plant system, similarly with the controller sys-
tem. Then there exists a controller system DRC such that DR = DRP ‖ DRC if
and only if the following two conditions are satisfied

DR0
P ⊂ DR0 (4.15)

DRπ ⊂ DRπ
P . (4.16)
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where

DR0
P := {(f1, e1, fR1, eR1) | (f1, e1, fR1, eR1, 0, 0) ∈ DRP }

DRπ
P := {(f1, e1, fR1, eR1) | ∃(f, e) s.t. (f1, e1, fR1, eR1, f, e) ∈ DRP }

DR0 := {(f1, e1, fR1, eR1) | (f1, e1, fR1, eR1, 0, 0, 0, 0) ∈ DR}

DRπ := {(f1, e1, fR1, eR1) | ∃(f2, e2, fR2, eR2) s.t

(f1, e1, fR1, eR1, f2, e2, eR2, eR2) ∈ DR}. (4.17)

Proof. The proof is again based on the copy DR∗
P of the plant system defined

as

DR∗
P := {(f1, e1, fR1, eR1, f, e) | (−f1, e1,−fR1, eR1,−f, e) ∈ DRP }, (4.18)

which is a composition of a Dirac structure and a pseudo-resistive relation.
Next define a controller system

DRC := DR∗
P ‖ DR.

We follow the same procedure for the proof as in the case of achievable Dirac
structures, Proposition 4.1.
Necessity of conditions (4.15) and (4.16) is obvious. Sufficiency is shown by
using the controller Dirac structure with dissipation

DRC := DR∗
P ‖ DR.

To check that DR ⊂ DRP ‖ DRC , consider (f1, e1, fR1, eR1, f2, e2, eR2, eR2) ∈
DR. Because (f1, e1, fR1, eR1) ∈ DRπ, applying (4.16) yields that ∃(f, e) such
that (f1, e1, fR1, eR1, f, e) ∈ DR1. This implies that (−f1, e1,−fR1, eR1,−f, e) ∈
DR∗

P . With the interconnection constraints, see Figure 4.2

f = −f∗, e = e∗, f∗
1 = −f ′

1, e∗1 = e′1.

By taking (f ′
1, e

′
1, f

′
R1

, e′R1
) = (f1, e1, fR1,eR1

) in Figure 4.2 it follows that
(f1, e1, fR1, eR1, f2, e2, eR2, eR2) ∈ DRP ‖ DRC and hence DR ⊂ DRP ‖
DRC .
To check that DRP ‖ DRC ⊂ DR, consider (f1, e1, fR1, eR1, f2, e2, eR2, eR2) ∈
DRP ‖ DRC . Then there exists f = −f∗, e = e∗, f∗

1 = −f ′
1, e∗1 = e′1 such that

(f1, e1, fR1, eR1, f, e) ∈ DR1 (4.19)

(f∗
1 , e∗1, f

∗
R1, e

∗
R1, f

∗, e∗) ∈ DR∗
1 ⇐⇒ (f ′

1, e
′
1, f

′
R1

, e′R1
, f, e) ∈ DRP (4.20)

(f ′
1, e

′
1, f

′
R1, e

′
R1, f2, e2, eR2, eR2) ∈ DR, (4.21)

subtracting (4.20) from (4.15) and also by making use of the linearity on DRP

we get

(f1 − f ′
1, e1 − e′1, fR1 − f ′

R1, eR1 − e′R1, 0, 0) ∈ DRP ⇐⇒

(f1 − f ′
1, e1 − e′1, fR1 − f ′

R1, eR1 − e′R1) ∈ DR0
P . (4.22)
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4.2 Achievable Casimirs for finite-dimensional systems

.Using (4.22) and (4.15) we get

(f1 − f ′
1, e1 − e′1, fR1 − f ′

R1, eR1 − e′R1, 0, 0, 0, 0) ∈ DR. (4.23)

Finally, adding (4.23) and (4.21) we get

(f1, e1, fR1, eR1, f2, e2, eR2, eR2) ∈ DR,

and hence DRP ‖ DRC ⊂ DR

Remark 4.6. In this case also it can easily be checked that the conditions (4.15)
and (4.16) are no more equivalent as in the case of systems without dissipation
in Theorem 4.1). This is again due to the compositional property of a Dirac
structure with a resistive relation given by (D ‖ R)⊥ = (D ‖ −R).

Properties of DR∗
P

Consider the following input-state-output port-Hamiltonian plant system with
inputs f and outputs e

ẋ = [J(x) − R(x)]∂HP

∂x
(x) + g(x)f, x ∈ X , f ∈ R

m

e = gT (x)∂HP

∂x
(x), e ∈ R

m,

(4.24)

where J(x) is the interconnection matrix and R(x) corresponds to the dissi-
pation. The corresponding Dirac structure is given by the graph of the map

[
fp

e

]

=

[
−[J(x) − R(x)] −g(x)

gT (x) 0

] [
ep

f

]

. (4.25)

Now, going by the definition of DR∗
P , (see Equation (4.18)) we can write it as

[
−fp

e

]

=

[
−[J∗(x) − R∗(x)] −g∗(x)

g∗T (x) 0

] [
ep

−f

]

. (4.26)

This implies that the interconnection matrix J∗(x), the dissipation matrix
R∗(x) and the input vector field g∗(x) of DR∗

P would relate to the intercon-
nection matrix J(x), the dissipation matrix R(x) and the input vector field
g(x) of DRP as follows

J∗(x) = −J(x) R∗(x) = −R(x)

g∗(x) = g(x).
(4.27)

A standard plant-controller interconnection would result in a closed-loop
Dirac structure of the form, which we call as the desired closed-loop system

[
fp

fc

]

=

[
−J(x) g(x)gT

c (ξ)
−gc(ξ)g

T (x) −Jc(ξ)

]

+

[
R(x) 0

0 Rc(ξ)

] [
ep

ec

]

[
e
ẽ

]

=

[
gT (x) 0

0 gT
c (ξ)

] [
ep

ec

]

. (4.28)
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4 Casimirs and its Implications on Control

It can easily be checked that such a Dirac structure would satisfy the condi-
tions (4.15,4.16) and hence we can construct a controller Dirac structure as in
Theorem 4.5. The controller Dirac structure is defined as DRC = DR∗

P ‖ DR.
Interconnecting DR∗

P and DR with the following interconnection constraints

f∗
p = −fp

e∗p = ep,

would result in the following

fc = −[Jc(ξ) − Rc(ξ)]ec − gc(ξ)g
T (x)ep

g(x)gT
c (ξ)ec = −g(x)f.

(4.29)

We know from (4.28) that
e = gT (x)ep = f̃ .

Also , due to the left invertibility of g(x), we have the following

gT
c (ξ)ec = f = ẽ,

and hence we can rewrite (4.29) as

fc = −[Jc(ξ) − Rc(ξ)]ec − gc(ξ)f̃

ẽ = −f,
(4.30)

which gives the controller Dirac structure, with the input of the controller
given by the output of the plant system and the output of the controller given
by negative of the plant input, the case of such interconnection is called the
gyrative interconnection. It then directly follows that DR = DRP ‖ DRC .

4.2.4 Casimirs for a system with dissipation

We define a Casimir for a port-Hamiltonian system with dissipation to be any
function C : X → R such that its gradient, e = ∂C

∂x
, satisfies

(0, e, 0, 0) ∈ DR,

which implies that
dC

dt
= eT fp = 0. (4.31)

At this point one may think that the definition of Casimir function may be re-
laxed by requiring that the above expression holds only for a specific resistive
relation

RffR + ReeR = 0, (4.32)
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4.2 Achievable Casimirs for finite-dimensional systems

where the square matrices Rf and Re satisfy the symmetry and positive semi
definiteness condition

RfRT
e = ReR

T
f ≥ 0,

together with the dimensionality condition

rank[Rf | Re] = dim fR.

In this case, the condition for a function to be a conserved quantity for one
resistive relation will actually imply that it is a conserved quantity for all
resistive relations.

Indeed, let C : X → R be a function satisfying (4.31) for a specific resistive
port R specified by matrices Rf and Re as above. This means that e = ∂C

∂x
(x)

satisfies

eT fp = 0, ∀fp for which ∃ep, fR, eR s.t (fp, ep, fR, eR) ∈ DR

and RffR + ReeR = 0. (4.33)

However, this implies that (0, e, 0, 0) ∈ (D ‖ R)⊥. We also know that (D ‖

R)⊥ = D ‖ (−R), and thus there exists f̃R, ẽR such that Rf f̃R−ReẽR = 0 and

(0, e, f̃R, ẽR) ∈ DR.

Hence,
0 = eT · 0 + ẽT

Rf̃R = ẽT
Rf̃R.

By writing the pseudo resistive relation −R in image representation [58],

f̃R = RT
e λ, ẽR = RT

f λ, it follows that

λT RfRT
e λ = 0,

and by the positive definiteness condition RfRT
e = ReR

T
f > 0 this implies

that λ = 0, whence f̃R = ẽR = 0. Hence not only (0, e, f̃R, ẽR) ∈ D but actually
(0, e, 0, 0) ∈ D, implying that e is the gradient of the Casimir function.

Of course, the above argument does not fully carry through if the resis-
tive relations are only positive semi-definite. In particular this is the case if
RfRT

e = 0 (implying zero dissipation), corresponding to the presence of ideal
power-conserving constraints.

4.2.5 Achievable Casimirs for any resistive relation

In this section we characterize the achievable Casimirs of the closed-loop sys-
tem, in terms of the plant state. This characterization in terms of plant state is
useful in the sense that given a plant Dirac structure we can, without defin-
ing a controller, determine whether or not there exist Casimir functions for the
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PDR CDR

pf

pe RpRp ef ,

f

e

f−

e

cf

RcRc ef ,
ce

Figure 4.3: DRP ‖ DRC

closed-loop system which will shown will the help of some examples later on.
This is in addition to the fact the we can also determine the Casimir functions
for all R and Rc, with R ≥ 0 and Rc ≥ 0

We now consider the question of characterizing the set of achievable Casi-
mirs for the closed-loop system DRP ‖ DRC for all resistive relations and
every port behavior. Here DRP is the Dirac structure of the plant port-Ham-
iltonian system with dissipation with Hamiltonian HP , and DRC is the con-
troller Dirac structure. Then the Casimirs depend on the plant state x and
also on the controller state ξ, with the controller Hamiltonian HC(ξ) at our
own disposal.

Consider the notation as in Figure 4.3 and assume that the ports in (fp, ep),
(fRp

, eRp
) are respectively connected to the (given) energy storing elements

and the energy dissipating elements of the plant port-Hamiltonian system.
Similarly (fc, ec) are connected to the (to be designed) energy storing ele-
ments of the controller port-Hamiltonian system with dissipation; that is (fc =

−ξ̇, ec = ∂T HC

∂ξ
) and (fRc

, eRc
) are connected to the energy dissipation ele-

ments of the controller system. In this situation the achievable Casimirs are

functions C(x, ξ) such that ep = ∂T C
∂x

(x, ξ), ec = ∂T C
∂ξ

(x, ξ) belongs to the space

PCas = {ep | ∃DRc s.t ∃ec : (0, ep, 0, 0, 0, ec, 0, 0) ∈ DRP ‖ DRC}. (4.34)

The following theorem addresses the question of characterizing the achiev-
able Casimirs of the closed-loop system, regarded as functions of the plant
state x by characterization of the space PCas.

Proposition 4.7. The space PCas defined above is equal to the space

P̃ = {ep | ∃(f, e) s.t (0, ep, 0, 0, f, e) ∈ DRP }.

Proof. We see that PCas ⊂ P̃ trivially and by using the controller Dirac struc-

ture DRC = DR∗
P we obtain P̃ ⊂ PCas.
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4.2 Achievable Casimirs for finite-dimensional systems

4.2.6 Achievable Casimirs for a given resistive relation

If C : X → R is a Casimir function for a specific resistive relation R given by
(4.32), then this means that e = ∂C

∂x
(x) satisfies

∂TC

∂x
(x)fp = 0, for all fp s.t ∃es, fR, eR s.t (fp, ep, fR, eR) ∈ DR

and RffR + ReeR = 0,

which means that (0, e, 0, 0) ∈ (D ‖ R)⊥ (refer Equation (4.33)). Since we
know by Proposition 3.3 that (D ‖ R)⊥ = D ‖ −R, and thus C is a Casimir if
there exist (fR, eR) such that

(0, e,−fR, eR) ∈ DR.

We now consider the question of finding all the achievable Casimirs for the
closed-loop system DRP ‖ DRC , with DRP the Dirac structure of the plant
port-Hamiltonian system with dissipation with Hamiltonian HP , and DRC

is the controller Dirac structure; for a given resistive relations and every port
behavior. Consider DRP and DRC as above, and in this case the achievable
Casimirs are functions C(x, ξ) such that ∂T C

∂x
(x, ξ) belongs to the space

PCas = {ep | ∃DRc s.t ∃ec, fRp, eRp, fRc, eRc :

(0, ep,−fR, eR, 0, ec,−fRc, eRc) ∈ DRP ‖ DRC}.

Proposition 4.8. The space PCas defined above is equal to the linear space

P̃ = {e1 | ∃(fRp, eRp, f, e) s.t (0, ep,−fRp, eRp, f, e) ∈ DRP }.

Proof. The proof follows the same procedure as in Proposition 4.7.

Example 4.9. Consider the port-Hamiltonian system with (fp, ep) respectively
the flows and efforts corresponding to the energy storage elements, (fR, eR)
the flows and efforts corresponding to the energy dissipating elements and
inputs f and outputs e. The corresponding Dirac structure is given by

fp = −J(x)ep − gR(x)fR − g(x)f
[
eR

e

]

=

[
gT

R(x)
gT (x)

]

ep.

The characterization of the space PCas is given by

PCas = {ep | ∃fp s.t 0 = −J(x)ep − g(x)f and

0 = gT
R(x)ep}. (4.35)
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4 Casimirs and its Implications on Control

The above expression implies that the achievable Casimirs do not depend
on the coordinate where dissipation enters into the system (follows from the
second line, and well known in literature as the ”dissipation obstacle”). In
addition to that they are also the Hamiltonian functions corresponding to the
input vector fields given by the columns of g(x).

Example 4.10 (The Series RLC circuit). The dynamics of the circuit are given
by

[
q̇

φ̇

]

=

[
0 1
−1 −R

] [ q
C
φ
L

]

+

[
0
1

]

u,

and the corresponding Dirac structure is given by
[
−q̇

−φ̇

]

=

[
0 −1
1 0

] [ q
C
φ
L

]

−

[
0 0
0 1

] [
0

R φ
L

]

−

[
0
1

]

u

eR =
φ

L

ep =
[

0 xφ
L

]T
.

Comparing with Example 4.9 we have

(fp, ep, fR, eR, f, e) =
(

−[q̇, φ̇]T , [ q
C

, φ
L
]T , [0 -R φ

L
]T , [0 φ

L
]T , u, e

)

;

g(x) =

[
0
1

]

; gR(x) =

[
0
1

]

.

In this case the achievable Casimirs (in terms of the plant state x = [q, φ]T )
should satisfy the following set of equations

∂C

∂φ
(x, ξ) = 0.

The above expression is a constraint on the Casimir function implying that
any Casimir function for this system does not depend on φ term, which is
precisely where dissipation enters into the system. There however, would ex-
ist a Casimir which depends on the q term.

Example 4.11 (The Parallel RLC circuit). We next consider the case of a par-
allel RLC circuit whose dynamics are given by the following set of equations

[
q̇

φ̇

]

=

[
1
R

1
−1 0

] [ q
C
φ
L

]

+

[
0
1

]

u,

and the corresponding Dirac structure given by
[
−q̇

−φ̇

]

=

[
0 −1
1 0

] [ q
C
φ
L

]

−

[
1 0
0 0

] [
q

RC

0

]

−

[
0
1

]

u,
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4.2 Achievable Casimirs for finite-dimensional systems

where

(fp, ep, fR, eR, f, e) =
(

−[q̇, φ̇]T , [ q
C

, φ
L
]T , [ q

RC
0]T , [0 φ

L
]T , u, e

)

;

g(x) =

[
0
1

]

; gR(x) =

[
1
0

]

.

As above the achievable Casimirs in terms of the plant state x should be such
that

∂C

∂q
(x, ξ) =

∂C

∂φ
(x, ξ) = 0,

which means that we cannot find any Casimir functions for the closed-loop
system which depend on the plant state x (the only possible Casimirs are the
”trivial Casimirs”which are constant).

Example 4.12 (Special Case of Example 2.9). Consider the Capacitor micro-
phone as in Example 2.9, now with F = 0. (Such a case as considered as an
example in [36].) The elements of the Dirac structure in case of the Capacitor
microphone would be as follows

fp = −[q̇ ṗ Q̇]T , ep = [
∂H

∂q

∂H

∂p

∂H

∂Q
]

fR = [0 − c
∂H

∂p
-
1

R

∂H

∂Q
]T , eR = [0

∂H

∂p

∂H

∂Q
]T

g(x) =





0
0

1/R



 ; gR(x) =





0 0
1 0
0 1



 .

The achievable Casimirs in terms of the plant state are all functions C(q, p, Q),
satisfying

∂C

∂q
= 0

∂C

∂p
= 0

∂C

∂Q
= 0.

This means that we cannot find Casimirs depending on the plant state.

Remark 4.13. The existence of Casimirs is not a guarantee that the closed-
loop system has the desired stability properties. This is typically the case for
example in the case of underactuated mechanical systems and a broad class
of electromechanical systems where the Casimirs, even though they exist, are
not functions of the coordinates that need to be “shaped”. We shall elaborate
on this in the next chapter on control of port-Hamiltonian systems and also
discuss a few possible ways to overcome this drawback.
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pDR *
pDR DR

pqf

pqe
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pqe

'
pqf

'
pqe c

pqe

c
pqf

** , RpqRpq ef '' , RpqRpq ef

c
Rpq

c
Rpq ef ,

Figure 4.4: DR = DRP ‖ DR∗
P ‖ DR

4.3 Achievable Casimirs for infinite-dimensional
systems

4.3.1 Achievable Dirac structures

Similar to the finite-dimensional case we investigate what are the achievable
closed-loop Dirac structures interconnecting a given plant Stokes-Dirac struc-
ture with dissipation DRP to a to be designed controller Stokes-Dirac struc-
ture with dissipation DRC .

Theorem 4.14. Given a plant Stokes-Dirac structure with dissipation DRP , with
port variables (fpq, fRpq

, fb, epq, eRpq
, eb) and a desired DR with port variables

(fpq, fRpq
, f c

pq, f
c
Rpq

, epq, eRpq
, ec

pq, e
c
Rpq

). A certain interconnected DR = DRP ‖

DR can be achieved by a proper choice of the controller Stokes-Dirac structure with
dissipation if and only if the following two conditions are satisfied

DR0
P ⊂ DR0 (4.36)

DRπ ⊂ DRπ
P , (4.37)

where

DR0
P := {(fpq, epq, fRpq

, eRpq
) | (fpq, epq, fRpq

, eRpq
, 0, 0) ∈ DRp}

DRπ
P := {(fpq, epq, fRpq

, eRpq
) | ∃(fb, eb) : (fpq, epq, fRpq

, eRpq
, fb, eb) ∈ DRP }

DR0 := {(fpq, epq, fRpq
, eRpq

) | (fpq, epq, fRpq
, eRpq

, 0, 0, 0, 0) ∈ DR}

DRπ := {(fpq, epq, fRpq
, eRpq

) | ∃(f c
pq, e

c
pq, f

c
Rpq

, ec
Rpq

)

: (fpq, epq, fRpq
, eRpq

, f c
pq, e

c
pq, f

c
Rpq

, ec
Rpq

) ∈ DR}.

Proof. The proof follows the same lines as in the finite-dimensional case, which
again is based on a ”copy”of Dp (also see Figure 4.4) which in this case is de-
fined as

DR∗
P := {(fpq, epq, fRpq

, eRpq
, fb, eb) | (−fpq, epq,−fRpq

, eRpq
,−fb, eb) ∈ DRP }.

(4.38)
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pqf

pqe RpqRpq ef ,

bf
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c
pqe

c
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c
Rpq ef ,

Figure 4.5: DRP ‖ DRC

Properties of DR∗
P

Consider an infinite-dimensional port-Hamiltonian system with a 1-D spatial
domain and a distributed dissipation defined with respect to a Stokes-Dirac
structure DRP given by

[
fp

fq

]

=

[
G∗ d
d R∗

] [
ep

eq

]

[
fb

eb

]

=

[
−1 0
0 1

] [
ep |∂Z

eq |∂Z

]

. (4.39)

Now, consider the following closed-loop (achievable) Dirac structure DR.
This is obtained by interconnecting this system to another infinite-dimen-
sional port-Hamiltonian system







fp

fq

f c
p

f c
q







=







G∗ d 0 0
d R∗ 0 0
0 0 Gc∗ d
0 0 d Rc∗













ep

eq

ec
p

ec
q







. (4.40)

It can easily be checked that this Dirac structure satisfies the conditions
(4.36,4.37). By the definition of DR∗

P from Equation (4.38), we can write it as

[
−fp

−fq

]

=

[
−G∗ −d
−d −R∗

] [
ep

eq

]

[
−fb

−eb

]

=

[
−1 0
0 1

] [
ep |∂Z

eq |∂Z

]

. (4.41)

Theorem 4.14 defines the controller Dirac structure with dissipation as DRC =
DR∗

P ‖ DR. Now, interconnecting DRP with DR with the following inter-
connection constraints

f∗
p = −fp, f∗

q = −fq, f∗
b = −fb,

e∗p = ep, e∗q = eq, e∗b = eb,
(4.42)
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would, with the help of a few computations, result in the following controller
Stokes-Dirac structure with dissipation

[
f c

p

f c
q

]

=

[
Gc∗ d
d Rc∗

] [
ec

p

ec
q

]

[
f c

b

ec
b

]

=

[
−1 0
0 1

] [
ec

p |∂Z

ec
q |∂Z

]

. (4.43)

It then immediately follows that DR = DRP ‖ DRC .

4.3.2 Casimirs for an infinite-dimensional system

Consider the distributed parameter port-Hamiltonian system without dissi-
pation on an n−dimensional spatial domain Z having state space Ωp(Z) ×
Ωq(Z) and Stokes-Dirac structure given by (2.46). The Casimirs for this sys-
tem, which are independent of the Hamiltonian are obtained as follows. Let

C : Ωp(Z) × Ωq(Z) × Z → R,

be a function satisfying

d(δpC) = 0, d(δqC) = 0. (4.44)

Then the time-derivative of C along the trajectories of the system is given as

dC

dt
=

∫

Z

[δpC ∧ α̇p + δqC ∧ α̇q]

=

∫

Z

δpC ∧ (−1)rd(δqH) −

∫

Z

δqC ∧ (−1)rd(δpH)

= −(−1)n−q

∫

Z

d(δqH ∧ δpC) − (−1)n−q

∫

d(δqC ∧ δpH)

=

∫

∂Z

[eb ∧ fC
b + eC

b ∧ fb],

where we have denoted

fC
b := δpC |∂Z , eC

b := −(−1)n−qδqC |∂Z . (4.45)

In particular, if in addition to (4.44) the function C satisfies

δpC |∂Z= 0, δqC |∂Z= 0,

then dC
dt

= 0 along the system trajectories for any Hamiltonian H. The func-
tion C satisfying (4.44) and (4.45) is called a Casimir function for the infinite-
dimensional port-Hamiltonian system (2.52). If C satisfies Equation (4.44) but
not Equation (4.45) then C is called a conservation law for the system, as its
time-derivative is determined by the boundary conditions of the system.
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Figure 4.6: DP ‖ DC

4.3.3 Achievable Casimirs for systems without dissipation

In the previous subsection we have defined a Casimir function for an infinite-
dimensional system. If we write the Equation (4.44) in terms of the elements
of the Stokes-Dirac structure, we can say that a Casimir function for an au-
tonomous infinite-dimensional port-Hamiltonian system with dissipation is
any functional C : X → R such its gradients ep = δpC, eq = δqC satisfy

(0, 0, ep, eq) ∈ D,

implying that
dC

dt
=

∫

Z

ep ∧ fp + eq ∧ fq = 0.

We now address the question of characterizing the set of achievable Casimirs
for the closed-loop system. Consider the notation in Figure 4.6, where DRP

and DRC are two infinite-dimensional port-Hamiltonian systems, intercon-
nected to each other through the boundary. The interconnection can either be
through a part or whole of the boundary. Assume ports in (fpq, epq) are con-
nected to the (given) energy storing elements of the plant port-Hamiltonian
system and (fb, eb) the boundary port variables. Similarly (f c

pq, e
c
pq) connected

to the to-be-designed energy storing elements of the controller port-Hamilto-
nian system with (f c

b , ec
b) being the boundary variables of the controller sys-

tem. In this situation the achievable Casimir functions are functions C such
that ep = δpC, eq = δqC belongs to the space

PCas =
{
epq | ∃DC s.t ∃ ec

pq : (0, epq, 0, ec
pq) ∈ DP ‖ DC

}
. (4.46)

Again for brevity we use epq for (ep, eq). The following theorem then ad-
dresses the question of characterizing the achievable Casimirs of the closed-
loop system, regarded as functions of the plant state x , by finding a charac-
terization of the space PCas

Proposition 4.15. The space PCas defined in (4.46) is equal to the linear space

P̃ = {epq | ∃(fb, eb) : (0, epq, fb, eb) ∈ DP } .
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Proof. The inclusion PCas ⊂ P̃ is obvious, and taking the controller Dirac

structure Dc = D∗
p, the second inclusion P̃ ⊂ PCas is obtained.

Since for all epq ∈ P̃ we have fpq = 0 and (0, epq,−fb, eb) ∈ D∗
p . And with

respect to the Stokes-Dirac structure (2.46) this would mean that the space

P̃ is such that ep and eq are constants as functions of the spatial variable,
which in addition would mean f0 = fl and e0 = el, thus resulting in finite-
dimensional controllers.

Example 4.16. We see that in case of the transmission line without dissipation
(2.55), the Casimirs are functionals C such that

[
0
0

]

=

[
0 d
d 0

] [
δqC
δφC

]

, (4.47)

which means that the set of achievable Casimir functions is such that δqC and
δφC are constant as a function of z which means that

δqC |0= δqC(z) = δqC |l, δφC |0= δφC(z) = δφC |l ,

or in other words every Casimir function should be linear with respect to the
spatial variables.

Example 4.17. Consider the case of the shallow water equations with the ad-
ditional velocity component (2.69) C is a Casimir function if its gradients sat-
isfy





0
0
0



 =





0 d 0
d 0 1

∗h
d(∗v)

0 − 1
∗h

d(∗v) 0









δhC
δuC
δvC



 .

It follows from the first and the third rows of the above matrix that

δuC = 0,

meaning that the Casimir functions do not depend on the u component of
the velocity. To find all the Casimirs of the system we need to solve the PDE
given by the second row of the matrix i.e.

dδhC =
1

h
d(∗v)δvC. (4.48)

It can be shown that [53] that all the functions of the form given below are
Casimirs for the system

C =

∫

Z

h · (φ(
1

∗h
d(∗v))). (4.49)

Following are a few examples of Casimir functions:
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4.3 Achievable Casimirs for infinite-dimensional systems

1. Case where φ( 1
∗h

d(∗v)) = 1, in which case have C =
∫

Z
h which corre-

sponds to mass conservation

2. For φ( 1
∗h

d(∗v)) = 1
∗h

d(∗v), we have C =
∫

Z
d(∗)v which corresponds to

vorticity.

3. The case where φ( 1
∗h

d(∗v)) = ( 1
∗h

d(∗v))2, we have C =
∫

Z
1
∗h

∗ (d(∗v))∧
(d(∗v)) which is called the mass weighted potential enstrophy.

4.3.4 Achievable Casimirs for systems with dissipation

In this section we consider the case where now we have dissipation into the
infinite-dimensional system. From the finite-dimensional analysis we know
that a Casimir function for a given resistive relation is such that its gradients
e = ∂C

∂x
(x)satisfy (4.33) which implies that

(0, e) ∈ (D ‖ R)⊥ = (D ‖ −R).

Analogously in the case of infinite-dimensional systems with dissipation we
define a Casimir to be a functional such that its gradients (e = δC) satisfy

∫
ep ∧ fp + eq ∧ fq = 0 ∀(fpq) for which

∃epq, fRpq
, eRpq

s.t.(fpq, epq, fRpq
, eRpq

) ∈ DR,

and the resistive relation satisfying (3.9). This means that (0, epq) ∈ (D ‖
R)⊥ = (D ‖ −R). Thus we can say that a functional is a Casimir if its gradi-
ents epq = δpqC satisfy

(0, epq,−fRpq
, eRpq

) ∈ DR.

To address the question of finding all the achievable Casimirs for the closed
loop system DRP ‖ DRC , we consider the case where both DRP and DRC

are infinite-dimensional port-Hamiltonian systems with dissipation, and are
defined with respect to a Stokes-Dirac structure. The interconnection between
DRP and DRC takes place through the boundary of the system (see Figure
4.5). It can easily be shown that such an interconnection (through the bound-
ary) leads to another port-Hamiltonian system with dissipation. In this case
the achievable Casimirs are functionals C such that epq = δpqC belongs to the
space

PCas = {epq | ∃DRC s.t ∃ec
pq : (0, epq,−fRpq

, eRpq
, 0, ec

pq−f c
Rpq

, ec
Rpq

∈ DP ‖ DC}.

The characterization of the set of achievable Casimirs of the closed-loop sys-
tem in terms of the plant state, by finding characterization of the space PCas,
is addressed by the following theorem
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4 Casimirs and its Implications on Control

Proposition 4.18. The space PCas defined above is equal to the linear space

P̃ = {epq | ∃(fb, eb) : (0, epq,−fRpq, eRpq, fb, eb) ∈ DP }.

Proof. The proof follows the same steps as before by taking DRC = DR∗
P ,where

DR∗
P is as defined above.

Example 4.19. The dynamics of the transmission line with dissipation are
given by

[
−∂tq(z, t)
−∂tφ(z, t)

]

=

([
0 d
d 0

]

+

[
G∗ 0
0 R∗

])[
δqH
δφH

]

[
fb

eb

]

=

[
0 −1
1 0

] [
δqH |∂Z

δφH |∂Z

]

.

Here G and R respectively represent the distributed conductance and dis-
tributed resistance in the transmission line see Equation (3.15). Now, by ap-
plying Proposition 4.18, we see that the achievable Casimirs are all function-
als C(q(z, t), φ(z, t)) which satisfy

dδφC − G ∗ δqC = 0

dδqC − R ∗ δφC = 0. (4.50)

Remark 4.20. Contrast to the case of a transmission line without dissipation
(4.47), the clear distinction here is that we do not have Casimirs which are
constant with respect to the spatial variable z. This is clearly due to the pres-
ence of dissipation in the transmission line.

4.4 Achievable Casimirs for mixed finite and
infinite-dimensional systems

4.4.1 Achievable Dirac structures

The mixed finite and infinite-dimensional case we will consider here (and the
rest of the section) is the case where the plant Dirac structure DRP is the inter-
connection of a Stokes-Dirac structure with a finite-dimensional Dirac struc-
ture connected to one of its boundary, the controller Dirac structure DRC

being a finite-dimensional Dirac structure connected to the other end of the
Stokes-Dirac structure. In terms of Figure 3.5 this would mean a case where
DP = D1 ‖ D∞ together with their respective resistive relations and DC = D2

also with its resistive relation. This typically is a case where we wish to con-
trol a plant which is interconnected to a controller through an infinite-dimen-
sional system. An example is a power-drive consisting of a power converter,
transmission line and electrical machine.

Finding all the achievable Dirac structures of the closed-loop system in this
case follows, by a combination of the procedures followed in the previous
subsections. We briefly highlight the problem here.
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4.4 Achievable Casimirs for mixed finite and infinite-dimensional systems

Corollary 4.21. Consider a given mixed plant port-Hamiltonian system with dis-
sipation DRP with port-variables (f1, e1, fR1

, eR1, fpq, epq, fRpq
, eRpq

), which is a
composition of a Stokes-Dirac structure with a finite-dimensional Dirac structure
connected to one end of its boundary. Here (f1, e1), (fR1, eR1) respectively denote
the flow and effort variables corresponding to the energy storing elements and the
energy dissipating elements of the finite-dimensional part of the plant subsystem.
Similarly (fpq, epq), (fRpq

, eRpq
) respectively denote the flow and effort variables

corresponding to the energy storing elements and the energy dissipating elements of
the infinite-dimensional part of the plant subsystem. In this case a certain intercon-
nected DR = DRP ‖ DRC , where DRC is a to-be-designed finite-dimensional
controller Dirac structure, can be achieved by proper choice of the controller Dirac
structure if and only if the following two conditions are satisfied

DR0
P ⊂ DR0 (4.51)

DRπ ⊂ DRπ
P , (4.52)

where

DR0
P := {(f1, e1, fR1

, eR1, fpq, epq, fRpq
, eRpq

) |
(f1, e1, fR1

, eR1, fpq, epq, fRpq
, eRpq

, 0, 0) ∈ DRp}
DRπ

P := {(f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
) |

∃(fl, el) : (f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
, fl, el) ∈ DRP }

DR0 := {(f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
) |

(f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
, 0, 0, 0, 0) ∈ DR}

DRπ := {(f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
) | ∃(f2, e2, fR2

, eR2
) :

(f1, e1, fR1
, eR1, fpq, epq, fRpq

, eRpq
, f2, e2, fR2

, eR2
) ∈ DR}.

(4.53)

4.4.2 Achievable Casimirs

In this case the achievable Casimirs are functionals C(x, q̄(z, t) such that
δC(x, q̄(z, t) belongs to the space

PCas = {e1, epq | ∃DRC s.t ∃e2 :

(0, e1,−fR1
, eR1

, 0, epq,−fRpq, eRpq, 0, e2,−fR2
, eR2

) ∈ DRP ‖ DRC},
(4.54)

with (fR1, eR1) denoting the flows and efforts variables of the dissipation
term in the finite-dimensional part of the plant Dirac structure, and (fR2, eR2)
the flow and effort variables associated with the dissipation term in the con-
troller Dirac structure (finite-dimensional).

Similar to the finite-dimensional case, the following theorem addresses the
question of characterizing the achievable Casimirs of the closed-loop system,
regarded as functions of the plant state by characterization of the space PCas.
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4 Casimirs and its Implications on Control

Proposition 4.22. The space PCas defined above is equal to the space

P̃ = {e1, epq | ∃(fb, eb) s.t (0, e1, fR1, eR1, 0, epq,−fRpq, eRpq, fb, eb) ∈ DRP }.

where (fb, eb) are the boundary variables

Proof. The inclusion P̃ ⊂ PCas is again obtained by taking DR2 = DR∗
1

Example 4.23. A simple example in this case would be to consider a plant
system where we interconnect the transmission line at one end to a finite-
dimensional port-Hamiltonian system, the Dirac structure of which would
be given as





−ẋ1

−∂tq
−∂tφ



 =









−J(x) 0 0
0 0 d
0 d 0



+





R(x) 0 0
0 G∗ 0
0 0 R∗













∂xH
δqH
δφH



−





g(x)
0
0



 δqH |0

[
fl

el

]

=

[
−δφH |l
δqH |l

]

δφH |0= gT (x)e1.

The achievable Casimirs in this case are all functionals C such that

J(x)∂xC + g(x)δqC |0= 0

gT
R(x)∂xC =0

dδφC − G ∗ δqC = 0

dδqC − R ∗ δφC = 0.

We see that the first two conditions are the same as that obtained for the finite-
dimensional case (4.35) and the last two conditions are those corresponding
to the transmission line (4.50). It is easily seen that these conditions are a
combination of those obtained for the finite-dimensional and the infinite-di-
mensional systems respectively.

Remark 4.24. In a similar way one can also consider other mixed cases, where
the plant system is an infinite-dimensional system and the controllers be-
ing finite-dimensional systems interconnected through the boundary of the
infinite-dimensional plant system. This is the case then we wish to control
an infinite-dimensional system, with finite-dimensional systems through the
boundary. We consider such a case while dealing with control of fluid dy-
namical systems in Chapter 5.
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5

Control of port-Hamiltonian
systems

”Things should be made as simple as possible, but not any simpler.” -
Albert Einstien.

5.1 Control of finite-dimensional systems

In the previous chapters we have seen that a key feature of port-Hamiltonian
systems is that the power-conserving interconnection of a number of port-
Hamiltonian systems is again a port-Hamiltonian system, with total state
space the product of the state spaces of the components, total Hamiltonian
being the sum of the Hamiltonian functions and the Dirac structure defined
by the composition of the Dirac structures of the subsystems. We have de-
rived formulas for the composition of Dirac structures and the set of achiev-
able Dirac structures (by composition of a given plant Dirac structure with a
to-be-designed controller Dirac structure). We have also seen how this leads
to a characterization of the set of achievable Casimir functions.

In this chapter we discuss how to exploit these properties of port-Hamilto-
nian systems for control purposes. We are basically interested in the control
problem of set point regulation, using energy shaping techniques. We focus
on how to use the results obtained on achievable Casimirs for the closed-loop
systems in Chapter 4 for analyzing the stability of the closed-loop system. We
use the Casimirs in the extended state space to generate Lyapunov functions
of the closed-loop system as the sum of the plant and the controller Hamil-
tonians and the resulting Casimir function. We also see how by generating
Casimirs in the extended state space, we overcome the problem of initializ-
ing the controller arising in the general control by interconnection method.
Towards the end we study the limitations of this method and see how by the
use of new passive outputs we generate Lyapunov functions for a class of
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5 Control of port-Hamiltonian systems

forced Hamiltonian systems with dissipation. We also briefly highlight the
IDA-PBC method, which allows energy shaping by modification of the inter-
connection and damping matrices and how it overcomes certain drawbacks
of the control by interconnection methodology.

5.1.1 Energy-balancing control

In this section we are interested in finite-dimensional port-Hamiltonian sys-
tems in the input-output form as

ẋ = [J(x) − R(x)]
∂H

∂x
(x) + g(x)u

y = gT (x)
∂H

∂x
(x), (5.1)

where x ∈ R
n are the energy variables, the smooth function H(x) : R

n →
R represents the total energy and u, y ∈ R

m are the port power variables.
The port variables u and y are conjugated variables, in the sense that their
duality product defines the power flows exchanged with the environment
of the system. The interconnection structure is captured in the n × n skew-
symmetric matrix J(x) = −JT (x) and the n × m matrix g(x), while R(x) =
RT (x) ≥ 0 represents the dissipation, all these matrices depend smoothly
on the state x. The port-Hamiltonian system in the input-output form then
satisfies the energy balance equation

H [x(t)] − H [x(0)]
︸ ︷︷ ︸

stored energy

=

∫ t

0

u>(τ)y(τ)dτ

︸ ︷︷ ︸

supplied

−

∫ t

0

∂T H

∂x
(x(τ))R(x(τ))

∂H

∂x
(x(τ))dτ

︸ ︷︷ ︸

dissipated

.

(5.2)
This implies that port-Hamiltonian systems are passive with respect to the
supply rate uT y if the Hamiltonian is non-negative (or, bounded from below).

The control objective is to regulate the static behavior, that is, the equilib-
ria, which is determined by the shape of the energy function. It is therefore
natural to recast our control problem in terms of finding a dynamical system
and an interconnection pattern such that the overall energy function takes the
desired form. There are at least two important advantages of adopting such
an “energy shaping”perspective of control:

1. The energy function determines not just the static behavior, but also, via
the energy transfer between subsystems (through the ports), its tran-
sient behavior. Focusing our attention on the systems energy, we can
then aim, not just at stabilization, but also at performance objectives that
can, in principle, be expressed in terms of “optimal”energy transfer.
Performance and not stability is, of course, the main concern in appli-
cations.
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5.1 Control of finite-dimensional systems

2. Practitioners are familiar with energy concepts, which can serve as a
lingua franca to facilitate communication with control theorists, incor-
porating prior knowledge and providing physical interpretations of the
control action.

Passivity–based control techniques (PBC) [38, 58] achieve stabilization of
nonlinear feedback passive systems assigning a storage function with a mini-
mum at the desired equilibrium. For physical systems a natural candidate
storage function is the difference between the stored and the supplied ener-
gies, leading to the so-called energy–balancing control, whose underlying sta-
bilization mechanism is particularly appealing. Two important corollaries
follow from (5.2)

• The energy of the uncontrolled system (i.e., with u ≡ 0) is nonincreasing
(that is, H [x(t)] ≤ H [x(0)]), and it will actually decrease in the presence
of dissipation. If the energy function is bounded from below, the system
will eventually stop at a point of minimum energy. Also, as expected,
the rate of convergence of the energy function is increased if we extract
energy from the system, for instance, setting u = −Kdiy, with Kdi =
K>

di > 0 a so–called damping injection gain.

• Given that

−

∫ t

0

u>(s)y(s)ds ≤ H [x(0)] < ∞,

the total amount of energy that can be extracted from a passive sys-
tem is bounded. [This property, which (somehow misleadingly) is often
stated with the inequality inversed, will be instrumental in identifying
the class of systems that are stabilizable with energy balancing PBC.]

Often, the point where the open–loop energy is minimal (which typically
coincides with the zero state) is not the one of interest, and control is intro-
duced to operate the system around some nonzero equilibrium point, say x?.
Hence, the control problem consists in finding a control input u = β(x) + v
such that the energy supplied by the controller can be expressed as a function
of the state. Indeed, from (5.2) we see if we can find a function β(x) satisfying

−

∫ t

0

β>[x(s)]y(s)ds = Ha[x(t)] + κ,

for some function Ha(x), then the control u = β(x) + v will ensure that the
map v → y is passive with new energy function

Hd(x) = H(x) + Ha(x). (5.3)

For port–Hamiltonian systems, the following proposition characterizes the
class of functions β(x) and Ha(x) such that the closed–loop system satisfies
the new energy–balancing equation

97



5 Control of port-Hamiltonian systems

Hd[x(t)]−Hd[x(0)] =

∫ t

0

v>(τ)y(τ)dτ −

∫ t

0

∂T Hd

∂x
(x(τ))R(x(τ))

∂Hd

∂x
(x(τ))dτ,

with the dissipation term dd(t) ≥ 0 to increase the convergence rate.

Proposition 5.1. [58] Consider the port–Hamiltonian system (5.1), if we can find a
function β(x) and a vector function K(x) satisfying

[J(x) − R(x)]K(x) = g(x)β(x),

such that

i) ∂K
∂x

(x) =
(

∂K
∂x

(x)
)T

,

ii) K(x?) = −∂H
∂x

(x?),

iii) ∂K
∂x

(x?) > −∂2H
∂x2 (x?).

Then the closed–loop system is a port-Hamiltonian system of the form

ẋ = [J(x) − R(x)]
∂Hd

∂x
(x), (5.4)

with Hd given by (5.3) and Ha satisfying K = ∂Ha

∂x
(x). Furthermore, x? is an

stable equilibrium point of (5.4).
The control law u = β(x) is customarily called a passivity-based control

law, since it is based on the passivity properties of the original system (5.1)
and transforms it into another passive system with shaped storage function
Hd.

The dissipation obstacle

Unfortunately, energy–balancing stabilization is stymied by the existence of
pervasive dissipation, that appears in many engineering applications. In-
deed, it has been shown in [40] that a necessary condition to satisfy Proposi-
tion 5.1 is that the natural damping of the port–Hamiltonian system satisfies

R(x∗)K(x∗) = 0.

If R(x) is diagonal, this condition requires that no damping is present in the
coordinates that need to be shaped, that is, the coordinate where the function
H(x) has to be modified. To characterize the dissipation obstacle it is con-
venient to adopt a control–by–interconnection viewpoint, which clearly reveals
the limitations of energy–balancing control, as we will see in the following
sections. Some control methodologies as the interconnection and damping
assignment passivity–based control and power shaping, has been proposed
in [40] and [37] respectively to overcome the dissipation obstacle. See also
Section 5.1.4 for further details.
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5.1 Control of finite-dimensional systems

5.1.2 Control by interconnection

In this section, we use the results on achievable Casimirs obtained in Chapter
4 to actually solve control problems involving stabilization of a given system
around a desired equilibrium. In Section 4.2 we argued how by generating
Casimir functions we can stabilize the closed-loop system in the case HP does
not have a minimum at the desired equilibrium. The resulting Lyapunov
function is given by the sum of Hamiltonians of the plant and the controller
systems and the corresponding Casimir function. We first recall the general
theory of control by interconnection in which we restrict the motion of the
system to a subspace of the extended state space. Next, we extend the method
of control by interconnection by making use of achievable Casimirs in the
extended state space.

General theory

The general theory on control by interconnection of port-Hamiltonian sys-
tems relies on the generation of Casimirs for the closed-loop system by look-
ing at the level sets of the Casimirs as invariant submanifolds of the combined
plant and controller state space Xp × Xc. Restricted to every such invariant
submanifold (part of) the controller state can be expressed as a function of the
plant state, whence the closed-loop Hamiltonian restricted to such an invari-
ant manifold can be seen as a shaped version of the plant Hamiltonian. To be
explicit suppose that we have found Casimirs of the form

ξi − Fi(x), i = 1, · · · , np,

where np is the dimension of the controller state space, then on every invari-
ant manifold ξi − Fi(x) = αi, i = 1, · · · , np, where α = (α1, · · · , αnp

) is a
vector of constants depending on the initial plant and controller state, the
closed-loop Hamiltonian can be written as

Hs(x) := Hp(x) + Hc(F (x) + α),

where, as before, the controller Hamiltonian Hc can still be assigned. This can
be regarded as shaping the original plant Hamiltonian Hp to a new Hamilto-
nian Hs.

Example 5.2. Consider the equations of a normalized pendulum

q̈ + sin q + dq̇ = u,

with d a positive damping constant. The total energy is given by H(q, p) =
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1
2p2 + (1 − cos q). The corresponding Dirac structure is given as

[
−q̇
−ṗ

]

=

[
0 −1
1 0

] [
sin q

p

]

+

[
0 0
0 1

] [
0
dp

]

−

[
0
1

]

u

eR =
[
0 p

]

ep = p.

The elements of the Dirac structure are given by

(fp, ep, fR, eR, f, e) =
(
−[q̇, ṗ]T , [sin q, p]T , [0 dp]T , [0 p]T , u, e

)

gR(x) =

[
0 0
0 1

]

; g(x) =

[
0
1

]

.

In this case the achievable Casimirs (in terms of the plant state (q, p)) are such
that

∂C

∂p
= 0.

The above expression implies that any Casimir function for this system does
not depend on the p term, which is precisely where dissipation enters into
the system. However we can find Casimirs depending on q and can use it for
stability analysis as shown below.
Stability analysis: Let q? be a desired equilibrium position of the pendulum.
The objective is to shape the potential energy P (q) = 1 − cos q in such a way
that it has a minimum at q = q?. Consider a first order controller written in
the input output form as

ξ̇ = uc

yc =
∂Hc

∂ξ
,

the corresponding elements of the Dirac structure being

(fc, ec, f
′

, e
′

) = (ξ̇,
∂Hc

∂xc

, uc, yc).

The interconnection constraints between the plant and the controller are given
as

u = yc, uc = −yp. (5.5)

We know from Chapter 4 that the Casimirs of the closed-loop system are func-
tions C(x, ξ) such that

(0,
∂C

∂x
, 0, 0, 0,

∂C

∂ξ
) ∈ D, (5.6)
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also see Equation (4.34). Since we are looking for Casimirs of the form C =
ξ − F (q) , the solution to (5.6) are functions of the form F (q) = q. Choosing

Pc(ξ) = cos ξ +
1

2
(ξ − q?)

2,

and substituting ξ = F (q) + c = q + c we get the shaped potential energy as

Pd(q) = P (q) + Pc(F (q) + c)

= (1 − cos q) + cos(q + c) +
1

2
(q + c − q?)

2.

However, in order to obtain a minimum at q = q∗ the controller needs to be
initialized in such a way that c = 0. The passivity based control u = α(x) is
simply

u = −
∂Hc

∂ξ
(q) = sin q − (q − q∗).

Casimirs in the extended state-space

In this section a modification of the control by interconnection method to
overcome the problem of controller initialization mentioned above is pro-
posed. The key idea is to analyze the closed-loop system in the extended state
space X × Xc, with the control objective of stabilization of a desired equilib-
rium (x∗, ξ∗), for some ξ∗ satisfying equilibrium conditions of the closed-loop
system. To this end, we consider general Casimir functions C : X × Xc → R.
These can be characterized by the space as in (5.6). In this case we see that
we can not only use C(x, ξ) as a Casimir function but all functions of the
form Ψ(C(x, ξ)) can be used for the purpose of the stability analysis of the
closed-loop system. Thus we have a whole family of Casimirs to choose from,
instead of specific Casimirs. On the basis of the Hamiltonian of the plant,
the Hamiltonian of the controller and the corresponding Casimir function a
Lyapunov function candidate is built as the sum of the plant and controller
Hamiltonians and the Casimir function as

V (x,ξ) = H(x) + Hc(ξ) + Ψ(C(x, ξ)). (5.7)

The time derivative of the Lyapunov function then satisfies

d

dt
V (x, ξ) = −

∂T H

∂x
(x)R(x)

∂T H

∂x
(x) −

∂T Hc

∂ξ
(ξ)Rc(ξ)

∂T Hc

∂ξ
(ξ) ≤ 0,

and hence V (x, ξ) qualifies as a Lyapunov function for the closed-loop dy-
namics.
The next step would be to shape the closed-loop energy in the extended state
space (x, ξ) in such a way that it has a minimum at (x?, ξ∗). (Note that x∗ is
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the desired equilibrium point of the plant system, while the controller equi-
librium point ξ∗ can be chosen arbitrarily). Therefore we require that the
gradient of (5.7) has an extremum at (x?, ξ∗) and that the Hessian at (x?, ξ∗)
is positive definite, that is

[
∂
∂x

[H(x) + Ψ(C(x, ξ))] |(x?,ξ∗)
∂

∂ξc
[Hc(ξ) + Ψ(C(x, ξc))] |(x?,ξ∗)

]

= 0, (5.8)

and
"

∂2

∂x2 [H(x) + Ψ(C(x, ξ))] ∂2

∂ξ∂x
Ψ(C(x, ξ))]

∂2

∂x∂ξ
Ψ(C(x, ξ))] ∂2

∂x2
c
[Hc(xc) + Ψ(C(x, ξ))]

#˛

˛

˛

˛

˛

(x?,ξ?)

≥ 0. (5.9)

Suppose that V (x, ξ) has a strict local minimum at (x?, ξ∗), that is, there
exists an open neighborhood B of (x?, ξ∗) V (x, ξ) > V (x∗, ξ∗) for all x ∈ B.
Furthermore assume that the largest invariant set under the closed–loop dy-
namics contained in

{(x, ξ) ∈ X × Xc ∩ B|
∂>H

∂x
(x)R(x)

∂>H

∂x
(x) = 0,

∂>Hc

∂ξ
(ξ)Rc(ξ)

∂>Hc

∂ξ
(ξ) = 0},

equals (x?, ξ∗), with ξ∗ being arbitrary. Then (x?, ξ∗) is a locally asymptoti-
cally stable equilibrium of the closed–loop system.

Example 5.3. Consider a mechanical system with damping and actuated by
external forces u described as port-Hamiltonian system with dissipation

[
q̇
ṗ

]

= (

[
0 Ik

−Ik 0

]

−

[
0 0
0 D(q)

]

)

[
∂H
∂q
∂H
∂p

]

+

[
0

B(q)

]

u

y = BT (q)
∂H

∂p
, (5.10)

with x =

[
q
p

]

, where q ∈ R
n are the generalized configuration coordinates,

p ∈ R
n the generalized momenta, and D(q) = DT (q) ≥ 0 is the damping

matrix. If D(q) > 0, then it is said that the system is fully damped. The out-
puts y ∈ R

m are the generalized velocities corresponding to the generalized
external forces u ∈ R

m. In most cases the Hamiltonian H(q, p) takes the form

H(q, p) =
1

2
pT M−1(q)p + P (q), (5.11)

where M(q) = MT (q) > 0 is the generalized inertia matrix, 1
2pT M−1(q)p =

1
2 q̇T M(q)q̇ is the kinetic energy, and P (q) is the potential energy of the system.
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5.1 Control of finite-dimensional systems

Consider now a controller port-Hamiltonian system

ξ̇ = [Jc(ξ) − Rc(ξ)]
∂Hc

∂ξ
(ξ) + gc(ξ)uc

yc = gT
c (ξ)

∂Hc

∂ξ
(ξ).

Then the equations (5.6) for C = (C1(x, ξ), ..., Cm(x, ξ))T take the form

∂T C

∂p

∂C

∂q
−

∂T C

∂q

∂C

∂p
=

∂T C

∂ξ
Jc(ξ)

∂C

∂ξ

D(q)
∂C

∂p
= 0 = Rc(ξ)

∂C

∂ξ

∂T C

∂p
= 0, and

∂T C

∂q
= −

∂T C

∂ξ
gc(ξ)B

T (q),

or equivalently

Jc = 0,
∂C

∂p
= 0,

∂T C

∂q
+

∂T C

∂ξ
gc(ξ)B(q) = 0. (5.12)

Hence if we can solve the PDE in the above equation, then the closed-loop
port-Hamiltonian system with Jc = 0 admits Casimirs Ci(x, ξ), i = 1, ..., m.
leading to a closed loop system





q̇
ṗ

ξ̇



 =





0 Ik 0
−Ik 0 −B(q)gT

c (ξ)
0 gc(ξ)B(q) 0










∂Hc

∂q
∂Hc

∂p
∂Hc

∂ξ






y = BT (q)
∂Hc

∂x

yc = gc(ξ)
∂Hc

∂ξ
,

for the shaped system

Hs(q, p, ξ) = H(q, p) + Hc(ξ).

If H(q, p) is given as in (5.11), then

Hs(q, p, ξ) =
1

2
pT M(q)p + P (q) + Hc(ξ),

and the control amounts to shaping the potential energy of the system.
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5 Control of port-Hamiltonian systems

Example 5.4. We again consider the case of the normalized pendulum as in
the above example. With first order controllers, we need to solve (5.12) for
Casimirs of the closed loop system. In other words we are looking for the
solution of the pde ∂C

∂x
(x, ξ) = ∂C

∂ξ
(x, ξ). The solution of this pde should be of

the form C(x, ξ) = q − ξ, hence any function of the form Ψ(q − ξ) is a Casimir
for the closed-loop system.
Stability Analysis: The objective is to stabilize the system at a desired equi-
librium in the extended state space (q?, ξ∗). We shape the potential energy in
such a way that it has a minimum at q = q?, ξ = ξ∗. This can be achieved by
choosing a controller Hamiltonian of the form

Hc(ξ) =
1

2
β(ξ − ξ∗ −

1

β
sin q?)

2,

and the function Ψ(C(q, ξ)) = Ψ(q − ξ) as

Ψ(q − ξ) =
1

2
k(q − q? − (ξ − ξ∗) −

1

k
sin q?)

2,

where β and k are chosen to satisfy (5.8) and (5.9). Simple computations
show that β and k should be chosen such that

cos q? + k > 0, β cos q? + k cos q? + kβ > 0.

The resulting passivity based input u, which is a dynamic output feedback, is
then given by

u = −
∂Hc

∂ξ
(ξ) = −β(ξ − ξ∗ −

1

β
sin q?).

Remark 5.5. In the same way we can also stabilize a system of n ”fully actu-
ated”pendulums connected to each other, in which case we have to solve n
different pde’s for each of the subsystem, in order to find the corresponding
Casimir functions.

5.1.3 Passivity with respect to a new output

As discussed in section 4.2 of the previous chapter, there are cases of systems
(for example the case of a parallel RLC circuit in Example 4.11 or the special
case of the capacitor microphone as in Example 2.9) where we cannot find
Casimirs for the closed-loop system and hence cannot apply the control by
interconnection method for stabilizing a given plant system. So far in our
analysis and in the interconnection of the plant system with the controller
system,we have taken the ”natural ”port variables to define the passive map.
Some recent work [21], has established the existence of alternative passive
maps for port-Hamiltonian systems. We now see how with these new port-
variables the interconnected system admits new dynamical invariants and
how can we can use them for energy shaping. We state here, without proof,
the following proposition:
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5.1 Control of finite-dimensional systems

Proposition 5.6. [21] Consider the input state output port-Hamiltonian system
(5.1). Assume that [J(x) − R(x)] is full rank. The the system satisfies the new
energy balance equality

dH

dt
≤

∫

uT ỹ,

where ỹ = h̃(x, u), with

h̃(x, u) = −gT (x)(J(x) − R(x))−T
{
(J(x) − R(x)∂H

∂x
+ g(x)u

}

= −gT (x)(J(x) − R(x))−T ẋ.

Hence, if H(x) is bounded from below, the system is passive with respect to the
supply-rate uT ỹ and storage function H(x).

Remark 5.7. From the above proposition we have

Ḣ(x) = −ẋT R(x)ẋ + uT ỹ,

where ẋ , (J(x) − R(x))−T ẋ. Comparing with the classical power balance
equation,

Ḣ(x) = −
∂T H

∂x
R(x)

∂H

∂x
+ uT y.

This implies that the new passivity property is established by ”swapping the
damping”.

We make use of this new passivity property to study stability of forced
Hamiltonian system with dissipation [29], i.e. to analyze stability of the sys-
tem for a constant but nonzero input leading a forced equilibrium x̄ ∈ X .
Corresponding to u = ū, the forced equilibria are solutions of

[J(x̄) − R(x̄)]
∂H

∂x
(x̄) + g(x̄)ū = 0.

In general, a forced equilibrium will not be a minimum (or an extremum) of
H. Furthermore inserting u = ū into the new energy balance equation yields

dH

dt
= −ẋT R(x)ẋ + ūT ỹ(x), (5.13)

having a right hand side, which in general will be non-positive. Thus in most
cases the Hamiltonian cannot be directly used as a Lyapunov function for
stability of the forced equilibrium x̄. One way of approaching the problem is
to start from the power balance of the forced system (5.13) and to bring the
second term on the right-hand side to the left hand side, suggesting to look
for candidate Lyapunov functions

H(x(t)) − ūT

∫ t

0

ỹ(τ)dτ. (5.14)
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5 Control of port-Hamiltonian systems

To check whether (5.13) can be used as a Lyapunov function, the first basic

question is if we can write ūT
∫ t

0 ỹ(τ)dτ as a function of the state x. From a
control theoretic point of view, this suggests to consider a cascade of Σ with
input ū, followed by integration of y and to look for Lyapunov functions of
the composed system

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)ū

ξ̇ = ỹ(x, u), ξ ∈ R
m.

This can be written as an unforced Hamiltonian system with dissipation

»

ẋ

ξ̇

–

=

»

[J(x) − R(x)] −g(x)
−gT (x)[J(x) − R(x)]−T [J(x) − R(x)] gT (x)[J(x) − R(x)]−T g(x)

– »

∂Ha

∂x
∂Ha

∂ξ

–

,

(5.15)

with Ha(x, ξ) the augmented energy function

Ha(x, ξ) , H(x) + Hs(ξ), Hs(ξ) , −ūT ξ .

Writing ūT
∫ t

0 ỹ(τ)dτ as a function of x(t) then corresponds to expressing ξ(t)
as a function of x(t) along the dynamics (5.13). This in turn is true, if there
exist Casimirs of the form

Ci(x, ξ) = ξj − Fj(x), i ∈ m.

We then look for Lyapunov function candidates of the form (see [29] for de-
tails)

V(χ) = H(x) + Hc(ξ), Hc(ξ) = −ūT ξ

= H(x) −
m∑

j=1

ūj(Cj(x) + c).

Example 5.8 (Example 4.11 continued). We had seen before in Chapter 4 that
there do not exist Casimirs for the parallel RLC circuit with the standard pas-
sive output. We now discuss how, with the help of new passive outputs we
can achieve desired stability. The new passive output in this case would be
φ̇
R

+ q̇, where φ̇ is the voltage in the inductor and q̇ is the current through

the capacitor. Compare with the original output which is just φ
L
, the current

through the inductor. The closed-loop dynamics (5.15) take the form





q̇

φ̇

ξ̇



 =





−1/R 1 0
−1 0 −1

−2/R 1 1/R










∂Ha

∂q
∂Ha

∂φ
∂Hc

∂ξ




 ,
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5.1 Control of finite-dimensional systems

with Ha(x, ξ) = H(x) − ūξ. The closed-loop system is the same as that ob-
tained in [29], where the plant system was ”embedded”into a larger system.
The system then admits Casimirs of the form

C(x, ξ) = q +
1

R
φ − ξ.

The corresponding Lyapunov function is then given by

V(χ) =
1

2

q2

C
+

1

2

φ2

L
− ū

(

q +
1

R
x2

)

+
ū2

2

(

C1 +
L

R2

)

.

Example 5.9 (Example 2.9 continued). Consider the capacitor microphone

with the new outputs which are (q̇, Q̇). Comparing this with the standard
outputs, we have

ỹ1 = y1

ỹ2 = y2 +
1

R
E.

The control objective is to stabilize the system at the equilibrium point given
by (q̄, 0, Q̄), with

q̄Q̄

Aε
= Ē, Q̄2 = 2AεF̄ ,

where Ē and F̄ are the constant inputs. Interconnecting it to a controller of
the form

[
ξ̇1

ξ̇2

]

=

[
u1

u2

]

[
yc1

yc2

]

=

[
∂Hc

∂ξ1

∂Hc

∂ξ2

]

.

This yields the following closed-loop system dynamics









q̇
ṗ

Q̇

ξ̇1

ξ̇2









=









0 1 0 0 0
−1 −c 0 −1 0
0 0 − 1

R
0 − 1

R

0 1 0 0 0
0 0 − 1

R
0 − 1

R


















∂H
∂q
∂H
∂p
∂H
∂Q
∂Hc

∂ξ1
∂Hc

∂ξ2










.

It can easily be seen that the closed-loop systems admits Casimirs of the form

−ξ1 − ξ2 + x1 + x3 + c.
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5 Control of port-Hamiltonian systems

We then have the following Lyapunov function

V(X ) =
1

2m
p2 +

1

2
k(q − q̄)2 +

q

2Aε
Q2 − F̄ q − ĒQ + Ē

√

2AεF̄ .

Of course, the mere existence of Casimirs is not a sufficient condition for
achieving the desired stability properties. This is due to the fact that the
Casimirs, even though they exist, need not necessarily be a function of the
coordinate which we wish to shape. Below we present an example of a sys-
tem where we can find Casimirs for the closed-loop system but still cannot
achieve the desired stability properties.

Example 5.10. The model of a permanent magnet synchronous machine [48],
in the case of an isotropic rotor, in the dq frame can be written as a port-
Hamiltonian system in the input state output form, with the state vector x =
[x1, x2, x3]

> and

J(x) =





0 LP
J

x3 0
−LP

J
x3 0 −φ

0 φ 0



 ,

R(x) =





Rs 0 0
0 Rs 0
0 0 0



 , g =





1 0
0 1
0 0



 ,

where x1, x2 are the stator currents, x3 is the angular velocity, P is the number
of pole pairs, L is the stator inductance, Rs is the stator winding resistance,
and Φ and J are the dq back emf constant and the moment of inertia both
normalized with P. The inputs are the stator voltages [vd, vq]

>. The energy
function of the system is given by

H(x) =
1

2

(

Lx2
1 + Lx2

2 +
J

P
x2

3

)

.

The desired equilibrium to be stabilized is usually selected based on the so–
called “maximum torque per ampere” principle as x? = [0, Lτl

PΦ , J
P

x3?]
>

where τl is the constant load torque.1

Interconnecting the plant system with a port-Hamiltonian control

[
ξ̇1

ξ̇2

]

=

[
uc1

uc2

]

[
yc1

yc2

]

=

[
∂Hc

∂ξ1
(ξ1, ξ2)

∂Hc

∂ξ2
(ξ1, ξ2)

]

,

1In the port-Hamiltonian modeling of the permanent magnet synchronous machine, τl acts as
a perturbation to the system.
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5.1 Control of finite-dimensional systems

via the power preserving interconnection

vd = −yc1, vq = −yc2,
uc1 = ∂H

∂x1
(x), uc2 = ∂H

∂x2
(x)

,

yields the closed–loop system









ẋ1

ẋ2

ẋ3

ξ̇1

ξ̇2









=









−Rs
LP
J

x3 0 −1 0
−LP

J
x3 −Rs −φ 0 −1

0 φ 0 0 0
1 0 0 0 0
0 0 0 0 0


















∂H
∂x1
∂H
∂x2
∂H
∂x3
∂Hc

∂ξ1
∂Hc

∂ξ2










. (5.16)

Solving for Equation (5.6) we get that the Casimir function is given by C =
1
Φx3 − ξ2. Thus, the resulting Lyapunov function would be of the form (5.7)

V (x, ξ) =
1

2

(

Lx2
1 + Lx2

2 +
J

P
x2

3

)

+ Hc(ξ) + Ψ(
1

Φ
x3 − ξ2).

However, we can see that the equilibrium assignment condition (5.8) cannot
be satisfied, because we need to shape both x2 and x3 to assign x?, and the
Casimir depends only on x3.

In general, it is not possible to apply the Control by Interconnection method-
ology to the family of electromechanical systems described in [50]. Firstly, in
most cases, the closed–loop matrix Jcl(x, ξ) − Rcl(x, ξ) is full–rank, leading
to Casimir functions of the form C(x, ξ) = c, with c a constant vector, which
obviously cannot be used to shaped the energy of the system. Secondly, even
if we can determine the Casimirs—as in the case of the permanent magnet
synchronous machine—, these functions do not depend on the coordinates
we need to shape. The source of the problem is the lack of interconnection
between the electrical and mechanical subsystems.

Also in the case of mechanical systems the control law generated by the
control by interconnection method amounts to shaping the potential energy
of the system. However, in many cases, for example in the case of underactu-
ated mechanical systems, we need to shape the kinetic energy of the system
or in other words modify the interconnection structure of the system. This is
clearly not possible by this control strategy. To overcome this limitation a con-
trol strategy called Interconnection and damping assignment passivity based
control has been proposed in [40], which enables us to modify the intercon-
nection structure of the system and also overcome the dissipation obstacle.
We briefly highlight this method here.
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5 Control of port-Hamiltonian systems

5.1.4 Interconnection and damping assignment passivity
based control (IDA-PBC)

IDA–PBC was introduced in [40] as a procedure to control physical systems
described by port-Hamiltonian models in input–output form as in (5.1). The
idea is to generate a state-feed back control law which enables us to regulate
the behavior of the nonlinear system by assigning a desired interconnection
and damping structures to the closed-loop. If we talk in terms of a mechan-
ical system, IDA-PBC enables us not only to shape the potential energy, but
also the kinetic energy. This is in contrast to the control by interconnection
method, where the control law for a mechanical system amounts to shaping
the potential energy of the system, see Example 5.3. The IDA-PBC method
also enables us to shape the energy without the generation of Casimirs.

In the IDA–PBC procedure we select the structure of the closed–loop sys-
tem as another port-Hamiltonian system and then we characterize all assig-
nable energy functions compatible with this structure. This characterization
is given in terms of the solution of a partial differential equation (PDE) which
is parameterized by three (designer chosen) matrices that are related with the
interconnection between the subsystems, the damping and the kernel of the
systems input matrix, respectively. Several interpretations can be given to the
role played by these matrices. At the most basic—computational—level they
can be simply viewed as degrees–of–freedom to simplify the solution of the
PDE. In the case of physical systems the interconnection and the damping
matrices determine the energy exchange and the dissipation of the system,
respectively, consequently they can often be judiciously chosen invoking this
kind of physical considerations. See [36] for an extensive list of references and
applications of this methodology.

The main proposition of IDA–PBC for port–Hamiltonian systems is stated
as follows

Proposition 5.11. [40] Consider the system (5.1), assume there are matrices g⊥(x),
Jd(x) = −JT

d (x), Rd(x) = RT
d (x) ≥ 0 and a function Hd : R

n → R that verify the
PDE

g⊥(x)[J(x) − R(x)]∇H = g⊥(x)[Jd(x) − Rd(x)]∇Hd, (5.17)

where g⊥(x) is a full–rank left annihilator of g(x), i.e., g⊥(x)g(x) = 0, and Hd(x)
is such that

x? = arg minHd(x), (5.18)

with x? ∈ R
n the equilibrium to be stabilized. Then, the closed–loop system (5.1)

with u = β(x), where

β(x) = [gT (x)g(x)]−1gT (x){[Jd(x)−Rd(x)]∇Hd − [J(x)−R(x)]∇H}, (5.19)

takes the port-Hamiltonian form

ẋ = [Jd(x) − Rd(x)]∇Hd, (5.20)
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5.1 Control of finite-dimensional systems

with x? a (locally) stable equilibrium. It will be asymptotically stable if, in addition,
x? is an isolated minimum of Hd(x) and the largest invariant set under the closed–
loop dynamics (5.20) contained in

{

x ∈ R
n | [∇Hd]

T
Rd(x)∇Hd = 0

}

, (5.21)

equals {x?}. An estimate of its domain of attraction is given by the largest bounded
level set {x ∈ R

n | Hd(x) ≤ c}.

Following the ideas of Chapter 2 and 3 the IDA–PBC methodology can be
expressed in the Dirac structure framework as follows: consider the port–
Hamiltonian system with state space X , Hamiltonian H corresponding to the
energy storage port S, resistive port R and control port C, given in input–
state–output form in (5.1). If the Dirac structure D is given in matrix kernel
representation as

D = {(fS , eS , fR, eR, fc, ec) ∈ FS ×F∗
S ×FR ×F∗

R ×Fc ×F∗
c

| FSfS + ESeS + FRfR + EReR + Fcfc + Ecec = 0} ,

with

i) ESFT
S + FSET

S + ERFT
R + FRET

R + EcF
T
c + FcE

T
c = 0,

ii) rank[FS

...ES

...FR

...ER

...Fc

...Ec] = dim(FR×FR ×Fc).

Then, the port–Hamiltonian system (5.1) is given by the set of equations

−FS ẋ(t) + ES

∂H

∂x
(x(t)) + FRfR(t) + EReR(t) + Fcf(t) + Ecec(t) = 0, (5.22)

where we have set the flows of the energy storing elements fS = −ẋ (the
negative sign is included to have a consistent energy flow direction) and the
efforts corresponding to the energy storing elements eS = ∂H

∂x
.

Restricting to linear resistive elements, the flow and effort variables con-

nected to the resistive elements are related as fR = −R̃eR, with R̃ = R̃T ≥ 0.
Substituting these into (5.22) leads to the description of the physical system
(5.1) by the set of DAE’s

−FS ẋ(t) + ES

∂H

∂x
(x(t)) − FRR̃eR + EReR + Fcfc(t) + Ecec(t) = 0, (5.23)
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where we can see that (5.1) is a special case of (5.23) by letting

FS =





In

0
0



 , ES =





J(x)
−gT

R(x)
−gT (x)



 , FR =





gR(x)
0
0



 , ER =





0
Ir

0



 ,

Fc =





g(x)
0
0



 , Ec =





0
0

Im



 ,

with r = dimFR, and setting u = fc, y = ec and R(x) = gT
R(x)R̃gR(x) with gR

representing the input matrix corresponding to the resistive port. As above
the objective of IDA–PBC is to find a control input u = β(x) such that the
closed-loop system (5.20) in implicit form is given by

−FS ẋ(t) + ESd

∂Hd

∂x
(x(t)) − FRd

R̃deRd
+ ERd

eRd
= 0, (5.24)

with

FS =





In

0
0



 , ESd
=





Jd(x)
−gRd

(x)
0



 , FRd
=





gRd
(x)

0
0



 , ERd
=





0
Ird

0



 ,

where Jd(x) = −JT
d (x), Rd(x) = gT

Rd
(x)R̃dgRd

(x) = RT
d (x) ≥ 0, with gRd

representing the input matrix corresponding to the desired resistive port and
rd = dimFRd

.
Multiplying both sides of (5.23) and (5.24) by F⊥

c —a full–rank left annihi-
lator of Fc, i.e. F⊥

c Fc = 0—and eliminating ẋ, we get

F⊥
c

[

ES

∂H

∂x
(x(t)) − FRR̃eR + EReR + Ecec(t)

]

= F⊥
c

[

ESd

∂Hd

∂x
(x(t)) − FRd

R̃deRd
+ ERd

eRd

]

,

assigning F⊥
c = [g⊥(x) 0 0], with g⊥(x) a full–rank left annihilator of g(x),

that is, g⊥(x)g(x) = 0, the above equation becomes

F⊥
c

[

ES

∂H

∂x
(x(t)) − FRR̃eR

]

= F⊥
c

[

ESd

∂Hd

∂x
(x(t)) − FRd

R̃deRd

]

, (5.25)

which is an equivalent representation of the matching condition (5.17).

Remark 5.12. Equation (5.25) gives us the equivalent matching condition of
the input state output port-Hamiltonian system (5.1) written in a matrix-
kernel representation. This analysis could give way for developing IDA-PBC
techniques for general port-Hamiltonian systems not necessarily in the input-
output form.
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5.2 Control of infinite-dimensional systems

5.2.1 Stability of infinite-dimensional systems

In contrast to the finite-dimensional system case the stability analysis of infi-
nite-dimensional systems is more complicated, even though the idea is again
to show that the equilibrium corresponds to a strict extremum of the total
energy. However, to establish stability it is no longer sufficient to examine
the definiteness of the second variation of the Lyapunov function. In infinite-
dimensions care must be taken to specify the norm associated with the stabil-
ity argument because stability with respect to one norm does not necessarily
imply stability with respect to another norm. This is a consequence of the fact
that, unlike finite-dimensional vector spaces, all norms are not equivalent in
infinite dimensions. In particular, in infinite-dimensions, not every conver-
gent sequence in the unit ball converges to a point on the unit ball, that is unit
balls in infinite-dimensional spaces need not be compact.

Definition 5.13. The equilibrium point χr∗ of a distributed parameter system
is said to be stable in the sense of Lyapunov with respect to the norm ‖ · ‖, if
for every ε > 0 there exists a δ > 0 such that ‖ χr(0) − χr∗ ‖< δ =⇒
‖ χr − χr∗ ‖< ε for all t > 0, where χr(0) is the initial condition of χr.

We state a stability theorem for infinite-dimensional systems, what is re-
ferred to as Arnold’s theorem for stability of infinite-dimensional systems.

Theorem 5.14. (Stability of an infinite-dimensional system): Consider a dynamical
system ẋ = f(x) on a linear space X , where x∗ is an equilibrium. Assume there exist
solutions to the system and suppose there exists a function Hd : X → R such that

δHd(x∗) = 0 and
dHd

dt
≤ 0.

Define ∆x = x − x∗ and assume there exists a quadratic function Q such that

c1Q(∆x) ≤ Hd(x∗ + ∆x) − Hd(x∗), (5.26)

while Q(∆x) > 0 for all ∆x 6= 0. Define the norm ‖ ∆x ‖ by ‖ ∆x ‖2= Q(∆x).
Assume that

| Hd(x∗ + ∆x) − Hd(x∗) |≤ c2 ‖ ∆x ‖α, (5.27)

for certain constants α, c1, c2 > 0 and ‖ ∆x ‖ sufficiently small. Then x∗ is a stable
equilibrium.

Proof. Since Hd(x + x∗) is decreasing in time, we obtain from (5.26) for all
t ≥ 0

‖ ∆x ‖2
time=t≤‖ Hd(x∗+∆x)−Hd(x∗) ‖time=t≤‖ Hd(x∗+∆x)−Hd(x∗) ‖time=0 .
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Hence by (5.27)

‖ ∆x ‖2
time=t≤

c2

c1
‖ ∆x ‖α

time=0,

showing stability.

5.2.2 Control by Interconnection: example of an RLC circuit
with a transmission line

As an example of the above result on stability of infinite-dimensional system,
we consider the case of stabilization of a plant system which is a composition
of an infinite-dimensional port-Hamiltonian system with a finite dimensional
system. This is a case of what we called as mixed finite and infinite-dimen-
sional port-Hamiltonian systems in Chapter 3. We consider stabilization of a
RLC circuit with a transmission line.
Consider a series RLC circuit whose dynamics are given by the following set
of equations:

[
fx

e

]

=





[
0 −1
1 R

]

−

[
0
1

]

[
0 1

]
0





[
ex

f

]

, (5.28)

where (fx, f, ex, e) = (−[ẋ1, ẋ2]
T , up,

[
x1

C
, x2

L

]T
, yp).

The total energy of the circuit is H(x) = 1
2

x2
1

C
+ 1

2
x2
2

L
, where x1 = q, the charge

on the capacitor and x2 = φ the flux in the inductor. The dynamics of the
transmission line are given by the telegraphers equations

[
∂
∂t

q
∂
∂t

φ

]

=

[
0 −d
−d 0

] [
δqH
δφH

]

,

[
fb

eb

]

=

[
0 −1
1 0

] [
δqH |b
δφH |b

]

. (5.29)

We consider a port-Hamiltonian plant whose dynamics are described by (5.28)
interconnected to a port-Hamiltonian controller system through a transmis-
sion line (an infinite dimensional system) given by (5.29). The interconnection
constraints are of the form

yc = f0, uc = e0,

yp = el, up = −fl.
(5.30)

With the above interconnection constraints the closed-loop dynamics can
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be written as







fp

fc

fq

fφ







=







−[J(x) − R(x)] 0 0 0
0 −[Jc(ξ) − Rc(ξ)] 0 0
0 0 0 d
0 0 d 0













ep

ec

eq

eφ







+







−g(x) 0
0 −gc(ξ)
0 0
0 0







[
eφl

eq0

]

[
eql

eφ0

]

=

[
gT (x)ep

−gc(ξ)ec

]

.

(5.31)

In energy variables the overall dynamics is given as







ẋ

ξ̇
∂
∂t

q(z, t)
∂
∂t

φ(z, t)







=







[J(x) − R(x)] 0 0 0
0 [Jc(ξ) − Rc(ξ)] 0 0
0 0 0 d
0 0 d 0













∂
∂x

H(x)
∂
∂ξ

H(ξ)

δpH(q̄)
δφH(q̄)







+







g(x) 0
0 gc(ξ)
0 0
0 0







[
δφH(q̄) |l
δqH(q̄) |0

]

[
δqH(q̄) |l
δφH(q̄) |0

]

=

[
gT (x) ∂

∂x
H(x)

−gc(ξ)
∂
∂ξ

H(ξ)

]

.

The closed-loop energy defined in the extended state space
χ = [x, ξ, q(z, t), φ(z, t)]T is given by

Hcl(χ) = H(x) + Hc(ξ) + H(q̄),

with energy rate

Ḣcl = −
∂T H

∂x
(x)R(x)

∂T H

∂x
(x) −

∂T Hc

∂ξ
(ξ)Rc(ξ)

∂Hc

∂ξ
(ξ).

A function C(χ) will be a Casimir function provided (this is a consequence of
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Equation (4.54))







0
0
0
0







=







−[J(x) − R(x)] 0 0 0
0 −[Jc(ξ) − Rc(ξ)] 0 0
0 0 0 d
0 0 d 0













∂
∂x

C(χ)
∂
∂ξ

C(χ)

δpC(χ)
δφC(χ)







+







−g(x) 0
0 −gc(ξ)
0 0
0 0







[
δφC(χ)|l
δqC(χ)|0

]

[
δqC(χ)|l
δφC(χ)|0

]

=

[
gT (x) ∂

∂x
C(χ)

−gc(ξ)
∂
∂ξ

C(χ)

]

.

(5.32)
The third and fourth relation of (5.32) says that every Casimir function should
be linear with respect to the spatial variables i.e.

δφC(χ), δqC(χ) = constant as a function of z, (5.33)

(this is also consistent with the expression we obtained in Equation 4.47).
Hence C should satisfy

δφC(χ) = δφC(χ) |0= δφC(χ) |l= −g(ξ)
∂

∂ξ
C(χ)

δqC(χ) = δqC(χ) |0= δqC(χ) |l= g(ξ)
∂

∂x
C(χ),

with the above equations (5.32) reduce to

[
J(x) − R(x) −g(x)gT

c (ξ)
gc(ξ)g

T (x) Jc(ξ) − Rc(ξ)

] [
∂
∂x

C(χ)
∂
∂ξ

C(χ)

]

= 0

[
δqC(χ)
δφC(χ)

]

=

[
gT (x) ∂

∂x
C(χ)

−g(ξ) ∂
∂ξ

C(χ)

]

.

We consider Casimirs of the form

C(χ) = F (x, ξ) + F(q̄(z, t)). (5.34)

which means that we are looking for functions which satisfy

[
J(x) − R(x) −g(x)gT

c (ξ)
gc(ξ)g

T (x) Jc(ξ) − Rc(ξ)

] [
∂
∂x

F (x, ξ)
∂
∂ξ

F (x, ξ)

]

= 0

[
δqF(q̄((z, t))
δφF(q̄(z, t))

]

=

[
gT (x) ∂

∂x
F (x, ξ)

−g(ξ) ∂
∂ξ

F (x, ξ)

]

.

(5.35)
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The first conditions of (5.35) are the same as those for a finite dimensional
plant-controller interconnection:

∂T F

∂x
(x, ξ)J(x)

∂F

∂x
=

∂T F

∂ξ
(x, ξ)Jc(ξ)

∂F

∂ξ

R(x)
∂F

∂x
(x, ξ) = Rc(ξ)

∂F

∂ξ
= 0

∂T F

∂x
(x, ξ)J(x) = −

∂T F

∂ξ
(x, ξ)gc(ξ)g

T (x)

∂T C

∂ξ
(x, ξ)Jc(ξ) =

∂T F

∂x
(x, ξ)g(x)gT

c (ξ), (5.36)

and the conditions on the functional are

δqF(q̄(z, t)) = gT (x)
∂F

∂x
(x, ξ)

δφF(q̄(z, t)) = −gT
c (ξ)

∂F

∂ξ
(x, ξ). (5.37)

Thus we have proved the following

Proposition 5.15. The functions C(χ) = F (x, ξ) + F(q̄(z, t)) are Casimir func-
tions of the interconnected port-Hamiltonian system (5.31) if and only if the func-
tion F (x) satisfies (5.36) and the functional F (q̄(z, t)) satisfies (5.37) and (5.33) if
yp = el or

δqF(q̄(z, t)) = −gT
c (ξ)

∂F

∂x
(x, ξ)

δφF(q̄(z, t)) = gT (x)
∂F

∂x
(x, ξ),

if yp = el.

Control Design

In the case of mixed lumped and distributed parameter systems we will de-
fine stability in the sense of Lyapunov as follows:

A suitable norm in our case would be

‖ ∆χr ‖=

(

| ∆x |2 + | ∆ξ |2 +

∫ l

0

∆q̃2(z, t)dz +

∫ l

0

∆φ̃2(z, t)dz

) 1
2

, (5.38)

with | · | the standard Euclidean norm and q = q̃dz and φ = φ̃dz.
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We propose a controller of the following form:

ξ̇ = uc

yc = ∂Hc

∂ξ
(ξ),

and have the closed-loop system as the following:









ẋ1

ẋ2

ξ̇
∂
∂t

q(z, t)
∂
∂t

φ(z, t)









=









0 1 0 0 0
−1 R 0 0 0
0 0 0 0 0
0 0 0 0 d
0 0 0 d 0


















x1

C
x2

L
∂Hc

∂ξ
(ξ)

∗q(z,t)
C(z)

∗φ(z,t)
L(z)










+









0 0
−1 0
0 −1
0 0
0 0









[
∗q(l,t)
C(l)

∗φ(0,t)
L(0)

]

[
∗λ(l,t)
L(l)

∗q(0,t)
C(0)

]

=

[ x2

L

−∂Hc

∂ξ
(ξ)

]

.

The total closed loop energy function is defined by

Hcl(χ) =
1

2

x2
1

C
+

1

2

x2
2

L
+ Hc(ξ) +

1

2

∫ l

0

(
q̃2(z, t)

C(z)
+

φ2(z̃, t)

L(z)
)dz,

with

Ḣcl(χ) = −R

(
x2

2

L

)2

.

Then the conditions on the Casimirs are as follows:

∂T F

∂x
(x, ξ)J(x)

∂F

∂x
= 0

R(x)
∂F

∂x
(x, ξ) = 0 = Rc(ξ)

∂T F

∂x
(x, ξ)J(x) = −

∂T F

∂ξ
(x, ξ)gT (x)

∂T F

∂x
(x, ξ)gT (x) = 0,

and the conditions on the functional are

δφF(q̄(z, t)) = 0

δqF(q̄(z, t)) = −
∂F

∂ξ
(x, ξ).
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Hence the function F (x, ξ) should satisfy the following PDE

∂F

∂x1
+

∂F

∂ξ
= 0. (5.39)

It is clear that any function of the form f(x1 − ξ) satisfies the above equation,
and the functional F(q̄(z, t)) should be of the following form,

F(q̄(z, t)) = −
∂F

∂ξ
(x, ξ)

∫ l

0

q̃(z, t)dz. (5.40)

Hence the Casimir function in the extended state space is given by

C(χ) = f(x1 − ξ) −
∂F

∂ξ
(x, ξ)

∫ l

0

q̃(z, t)dz, (5.41)

and the Lyapunov function is given by

Hd(χr) = 1
2

x2
1

C
+ 1

2
x2
2

L
+ Hc(ξ)+

1
2

∫ l

0( q̃2(z,t)
C(z) + φ̃2(z,t)

L(z) )dz + f(x1 − ξ) − ∂F
∂ξ

(x, ξ)
∫ l

0 q̃(z, t)dz.

(5.42)
Next we show that by selecting

Hc(ξ) = k1ξ̃ + k2ξ̃
2, (5.43)

and the function f(x1 − ξ) as

f(x1 − ξ) = k1(x̃1 − ξ̃),

where (x̃1, ξ̃) = (x1 − x∗
1, ξ − ξ∗), the shifted equilibrium, with ξ∗, the con-

troller equilibrium which can be chosen arbitrarily. We can then shape the
total energy in such a way that it has a minimum at the equilibrium point
χr∗ = [x∗, ξ∗, q∗(z), λ∗(z)]T ,

∇Hd(χr∗) =










x1∗

C
+ k1

0
0

q̃∗(z)
C(z) + k1

λ̃∗(z)
L(z)










= 0 =⇒





k1 = −x1∗

C

q̃∗(z) = C(z)x1∗
C

λ̃∗(z) = 0



 . (5.44)

Then we verify that these first order conditions are compatible with the bound-
ary conditions imposed by the interconnection constraints at the equilibrium
point, which are given by

yp∗ = − φ̃∗(l)
L(l) = 0, uc∗ = − φ̃∗(0)

L(0) ,

up∗ = q̃∗(l)
C(l) = −x1∗

C
, yc∗ = − q̃∗(0)

C(0) ,
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and using the first order conditions and the fact that yc∗ = ∂Hc

∂ξ
(ξ∗) we have

φ̃∗(l) = 0 uc∗ = 0

q̃∗(l) = C(l)x1∗

C
q̃∗(0) = −k1C(0),

and hence the boundary conditions imposed by the equilibrium point and
the first order condition are compatible.

In order to verify the second order conditions, we compute the functional
Hd(χ∗ +∆χ) in (5.26) as proportional to the second variation of Hd(χr) in the
sense that its Taylor expansion about ∆χr is

N (∆χr) = Hd(χr∗ + ∆χr) − Hd(χr∗)

≈
1

2
∇2Hd(χr∗). (5.45)

We then get

Hd(χr∗ + ∆χr) = 1
2

(
x1∗
C

+∆x1)
2

C
+ 1

2
(∆x2)

2

L
+ k1(∆ξ) + k2(∆ξ)2+

1
2

∫ l

0

(
(C(z)

x1∗
C

+∆q(z,t))2

C(z) + (∆φ(z,t))2

L(z)

)

dz + k1(∆x1 − ∆ξ)+

k1

∫ l

0
(C(z)x1∗

C
+ ∆q̃(z, t))dz,

and

Hd(χr∗) =
1

2

(x1∗

C
)2

C
+

1

2

∫ l

0

(
(C(z)x1∗

C
)2

C(z)
+ k1

∫ l

0

C(z)
x1∗

C
dz,

where we have used (5.44) therefore,

N (∆χr) =
1

2

∆x2
1

C
+

1

2

∆x2
2

L
+ k2(∆ξ)2 +

1

2

∫ l

0

(
∆q2(z, t)

C(z)
+

∆φ2(z, t)

L(z)

)

dz.

(5.46)
Now we verify conditions (5.26) and (5.27) with respect to the following norm.

‖ χr ‖=

(

∆x2
1 + ∆x2

2 + ∆ξ2 +

∫ l

0

∆q̃2(z, t)dz +

∫ l

0

∆φ̃2(z, t)dz

)1
2

.

Considering that the physical characteristics of the transmission line (capaci-
tance and inductance) are upper and lower bounded on [0, l], that is

Lm ≤
1

L(z)
≤ LM , Cm ≤

1

C(z)
≤ CM , Li, Ci > 0, i = M, m. (5.47)
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It is easy to see that we can find constants c11, c12, cq1, cq2 which satisfy

c11∆x2
1 ≤ 1

2
∆x2

1

C
≤ c12∆x2

1

cq1

∫ l

0 ∆q2(z, t)dz ≤
∫ l

0
∆q2(z,t)

C(z) dz ≤ cq2

∫ l

0 ∆q2(z, t)dz,

and constants c21, c22, cλ1, cλ2 which satisfy

c21∆x2
2 ≤ 1

2
∆x2

2

L
≤ c22∆x2

2

cλ1

∫ l

0
∆φ2(z, t)dz ≤

∫ l

0
∆φ2(z,t)

L(z) dz ≤ cλ2

∫ l

0
∆φ2(z, t)dz,

and finally constants c31,c32 which satisfy

c31∆ξ2 ≤ k2(∆ξ)2 ≤ c32∆ξ2.

In fact one can simply take the constants c11, c12 and c21, c22 as

c11 = c12 = 1
2C

c21 = c22 = 1
2L

.

Finally we have

c1 , min{ 1
2C

, 1
2L

, c31, cq1, cλ1}

c2 , max{ 1
2C

, 1
2L

, c32, cq2, cλ2}.

Hence we have proved

Proposition 5.16. Consider the RLC circuit defined by (5.28), the transmission line
modeled by (5.29), and the port-Hamiltonian controller defined by

ξ̇ = −
φ̃(0, t)

L(0)

yc = −
x1∗

C
+ 2k2(ξ − ξ∗),

under the interconnection constraints (5.30). The resulting interconnected system
has a stable equilibrium in the sense of definition (5.13) at

χ∗ =
[x1∗

C
, 0, ξ∗, C(z)

x1∗

C
, 0
]T

.

121



5 Control of port-Hamiltonian systems

5.2.3 The La Salle’s principle approach

La Salle’s theorem is a well-known result for the stability analysis of finite-
dimensional non-linear systems. If in a domain about the equilibrium point
we can find a Lyapunov function V (x) whose derivative along the trajectories
of the system is only negative semi-definite and if we can establish that no

trajectories, other than the equilibrium, can stay in the region where V̇ (x) = 0,
then this configuration is asymptotically stable. This is referred to as the La
Salle’s invariance principle.

To generalize this to infinite-dimensional systems, consider an infinite-di-
mensional port-Hamiltonian system given by (2.52) and denote by X∞ its
infinite-dimensional state space. Then assuming existence of solutions, it is
possible to define an operator Φ(t) : X∞ → X∞ such that

(αp, αq)(t) = Φ(t)(αp, αq)(0),

for each t ≥ 0. It can then be proven that Φ(t) is a family of bounded and con-
tinuous operators which is called C0 semi-group on X . See [34] for details.
The operator Φ gives the solution of the infinite-dimensional port-Hamilto-
nian system (2.52) for given initial and boundary conditions. For every χ,
denote by

γ(χ) :=
⋃

t≥0

Φ(t)χ, (5.48)

the set of all orbits of the infinite-dimensional port-Hamiltonian system through
χ and by

ω(χ) :=
{

χ̄ ∈ X∞ | χ̄ = lim
n→∞

Φ(tn)χ, with tn → ∞ as n → ∞
}

,

the (possibly empty) ω-limit set of χ. It can be shown [23] that ω(χ) is always
positively invariant, i.e. Φ(t)ω(χ) ⊂ ω(χ). Moreover, ω(χ) is also closed.

Theorem 5.17. [23] If χ ∈ X∞ and γ(χ) is precompact 2, then ω(χ) is nonempty,
compact and connected. Moreover,

lim
t→∞

d(Φ(t)χ, ω(χ)) = 0,

where, given χ̄ ∈ X∞ and Ω ⊂ X∞, d(χ̄, Ω) denotes the distance from χ̄ to Ω, that
is

d(χ̄, Ω) = inf
ω∈Ω

||χ̄ − ω||.

2A relatively compact subset Y of a topological space X is a subset whose closure is compact.
Since closed subsets of compact spaces are compact, every set in a compact space is relatively
compact. In the case of a metric topology, or more generally when sequences may be used to
test for compactness, the criterion for relative compactness becomes that any sequence in Y

has a subsequence convergent in X. This condition is also called pre-compact or relatively
bounded.
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This theorem characterizes the asymptotic behavior of the distributed pa-
rameter systems once the ω-limit set is calculated. Based on this result, it is
possible to state the invariance principle.

Theorem 5.18. [23] (LaSalle’ s invariance principle) Denote by H∞ a Lyapunov
function for the system (2.52), that is for Φ(t), and by B the largest invariant subset
of

{

χ ∈ X∞ | Ḣ∞(χ) = 0
}

,

that is Φ(t)B = B for all t ≥ 0. If χ ∈ X∞ and γ(χ) is precompact, then

lim
t→∞

d(Φ(t)χ,B) = 0.

An immediate consequence is expressed by the following corollary.

Corollary 5.19. Consider an infinite-dimensional port-Hamiltonian system for which
we assume existence of solutions and that γ(χ) defined in (5.48) is precompact. De-
note by χ∗ an equilibrium point and by H∞ a Lyapunov function. If the largest
invariant subset of

{

χ ∈ X∞ | Ḣ∞(χ) = 0
}

equals {χ∗}, then χ∗ is asymptotically stable.

5.2.4 Control by damping injection

In the case of finite-dimensional systems, we know that if the energy function
H of the system is characterized by a minimum at χ∗, then it is possible to
drive the system to the desired configuration by interconnecting a controller
that behaves as a dissipative element to the plant.

Now consider an infinite-dimensional port-Hamiltonian systems with port-
variables (fp, fq, fb, ep, eq, eb) corresponding to the variables in the spatial do-
main Z and also the boundary ∂Z. We focus on control through the bound-
ary of the system, more precisely control by damping injection through the
boundary. Consider the map

S : Ωn−q(∂Z) → Ωn−p(∂Z),

satisfying

S(eb) ∧ eb ≥ 0. (5.49)

We say that boundary damping is introduced if we relate the flows and effort
variables at the boundary by

fb = −S(eb). (5.50)
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From the energy balance equation (2.53) we have

dH

dt
= −

∫

∂Z

S(eb) ∧ eb ≤ 0.

Consequently, the energy function is non-increasing along the system trajec-
tories and it reaches a steady state configuration when

S(eb) ∧ eb = 0, (5.51)

on the boundary, where dissipation enters into the system. Now, denote by
B the set of configuration χ compatible with (5.51). We can then state the fol-
lowing proposition, the proof of which follows from the La Salle’s principle.

Proposition 5.20. Consider the infinite-dimensional port-Hamiltonian for which
solutions exist and which satisfy the precompactness conditions. Consider the bound-
ary control (5.50). If the largest invariant subset of

{

χ | Ḣ(χ) = 0
}

∩ B,

equals χ∗, then the configuration χ∗ is asymptotically stable.

Example 5.21 (Example 3.3.2 continued). Consider the coupled wave equa-
tions of (3.36). The total energy of the system is given by

H =
1

2

∫

Z

[
(ε1 ∧ σ1 + ρ1 ∧ v1) + (ε2 ∧ σ2 + ρ2 ∧ v2) + kq2

]

=
1

2

∫

Z

[

(ε1 ∧ E1 ∗ ε1 + ρ1 ∧
1

µ1
∗ ρ1) + (ε2 ∧ E2 ∗ ε21 + ρ2 ∧

1

µ2
∗ ρ2) + kq2

]

,

with the energy rate given by

dH

dt
= [σ1.v1 + σ2.v2] |

l
0 .

The control objective is to design a boundary control law under which the en-
ergy functional asymptotically assumes its zero configuration which is given
by

εi = 0, ρi = 0, i = 1, 2
q = 0.

(5.52)

If some dissipation effect is introduced through the boundary of the system
then it is possible to drive the state of the vibrating strings, which are con-
nected in parallel, to the configuration where the energy assumes its mini-
mum, in other words the configuration where the vibrations in the strings are
damped out, for all initial conditions.
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5.2 Control of infinite-dimensional systems

Suppose we now interconnect the system with a controller at z = L, with the
following conditions

vi(0, t) = 0, σi(L, t) = −βivi(L, t), t ≥ 0, i = 1, 2,

where βi > 0 then we have

dH

dt
= −β1v

2
1(L, t) − β2v

2
2(L, t) ≤ 0.

If we know a priori that the trajectories are bounded, that is γ(χ) is precom-
pact, then we know from proposition (5.20) that the system trajectories con-
verge to the largest invariant set in (5.52) and hence we can say that the sys-
tem asymptotically reaches its zero configuration. For techniques to compute
pre-compactness of the set γ(χ), we refer to [23].

Remark 5.22. Similarly we can also look at other boundary control laws where
we have dissipation in only one of the vibrating strings, these conditions
would be given as

v1(0, t) = 0, v1(L, t) = 0
v2(0, t) = 0, σ2(L, t) = −β2v2(L, t),

or
v1(0, t) = 0, σ2(L, t) = −β1v1(L, t)
v2(0, t) = 0, v2(L, t) = 0.

5.2.5 Energy based Lyapunov functions for infinite-
dimensional systems

So far in the section of control of infinite-dimensional systems, we considered
two different problems:

• In the first case we considered the problem of stabilization where the
plant system consisted of an infinite-dimensional subsystem. The prob-
lem there was to stabilize a finite-dimensional system with a finite-di-
mensional controller via an infinite-dimensional system.

• Next we have seen how boundary damping enables a system to asymp-
totically get to its zero state.

We now use the techniques above to study stability of a ”forced”infinite-
dimensional system. The control, which is a constant input, enters through
the boundary of the infinite-dimensional system

Consider an infinite-dimensional system, with a 1-D spatial domain and
the Hamiltonian given by

H(p, q) =

∫

Z

(c1p̃
2 + c2q̃

2)dz,
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5 Control of port-Hamiltonian systems

p(z, t), q(z, t) are the state variables, with c1 and c2 which may be constants,
as in the case of linear shallow water equations (2.64) or can depend on the
spatial variable, for example the distributed capacitances and inductances in
case of a transmission line (2.54). The dynamics of the system are given by

∂tp̃(z, t) + ∂x(c2q̃(z, t)) = 0

∂tq̃(z, t) + ∂x(c1p̃(z, t)) = 0,

together with the boundary conditions given by the values of c1p̃ and c2q̃
(the variational derivatives of the Hamiltonian) evaluated at the boundary.
The infinite-dimensional port-Hamiltonian system then satisfies the follow-
ing energy balance equation

dH

dt
= flel − f0e0

= c2q̃(l, t)c1p̃(l, t) − c2q̃(0, t)c1p̃(0, t). (5.53)

The energy function has a minimum at (p, q) = (0, 0) and in most cases this
equilibrium point is not the point of interest. Consider now a control problem
where we desire to stabilize the system at a forced equilibrium point (p̄, 0), by
making use of the boundary ports to shape the energy in such a way that it has
a minimum at the desired equilibrium point. In most cases the Hamiltonian
cannot be directly used for analyzing the stability of the forced equilibrium,
since the right hand side of (5.53) will in general be non-positive. One way
of approaching the problem is to start from the (5.53) and to being the second
term on the right-hand side to the left hand side. The by adding damping
though the boundary (through the first term on the right-hand side of (5.53)),
we can look for Lyapunov function candidates of the form

H + f̄0

∫ t

0

e0(τ)dτ, (5.54)

where f̄0 is the value of the forced input. To check whether (5.54) can be used

as a Lyapunov function, the question is if we can write f̄0

∫ t

0
e0(τ)dτ as a func-

tion of the state variable p(z, t) (since we wish to shape the p component of
the energy). From a system theoretic point of view, this suggests to consider
interconnection of the constant source system to the plant system under con-
sideration to one of its boundaries and look for Lyapunov functions of the
interconnected system

V (χ) = H(x) + Hs(ξ), Hs(ξ) = −f̄0ξ,

with ξ being the state of the controller system. Writing f̄0

∫ t

0 e0(τ)dτ as a
function of p(z, t) then corresponds to expressing ξ(t) as a function of p(z, t)
along the dynamics of the interconnected system.
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5.2 Control of infinite-dimensional systems

For the sake of simple illustration, we consider the example of the trans-
mission line whose dynamics are given by (2.54). We recall the equations
here:

[
∂tq
∂tφ

]

=

[
0 d
d 0

] [
δqH
δφH

]

=




d
(

∗q(z.t)
C(z)

)

d
(

∗φ(z,t)
L(z)

)



 ,

together with the boundary voltages and currents, the total energy in this case
is given by

H(q, φ) =
1

2

∫

Z

(

q̃2

C
+

φ̃2

L

)

dz.

In this case the problem would mean to stabilize the system at a desired volt-
age and zero current. Now consider the case where we have a constant input
voltage at one end of the line. From a modeling perspective, we can write the
source system as

ξ̇ = us

ys =
∂Hs

∂ξ
,

with Hs being the energy of the source system. We now interconnect this
source system to the transmission line with the following interconnection
constraints

eφ |0= us

eq |0= −
∂Hs

∂ξ
.

The resulting dynamics would be




ξ̇
∂tq
∂tφ



 =





0 0 · |0
0 0 d
0 d 0









∂Hs

∂ξ

δqH
δφH





δqH |0= −
∂Hs

∂ξ

fl = δqH |l; el = δφH |l,

with the total energy function

Hcl(q, p, ξ) =
1

2

∫
(

q̃2

C
+

φ̃2

L

)

dz −
q̄

C
ξ,

with Hc(ξ) = − q̄
C

ξ being the energy (unbounded) of the source system. To
this end we look for Casimirs of the form

F (q, p, ξ) = C(p, q) − ξ,
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5 Control of port-Hamiltonian systems

by solving





0
0
0



 =





0 0 · |0
0 0 d
0 d 0









−1
δqC
δφC





δqC |0= 1.

This yields a functional Cof the form
∫

q̃(z, t)dz − ξ. Hence, we have ξ =
∫

q̃(z, t)dz + c, with c some constant. We then have the candidate Lyapunov
function of the form

V(χ) =
1

2

∫
(

q̃2

C
+

φ̃2

L

)

dz +

∫

−
q̄

C
.q̃dz + c,

and by setting c = 1
2

q̄
C

2
, we have the incremental Lyapunov function

V(χ) =
1

2

∫

Z

(
(q − q̄)2

C
+

φ2

L

)

dz.

It follows that
V̇(χ) = flel,

and in addition if we add the following boundary control law (damping in-
jection through the boundary),

fl = −Rel, R > 0,

we would then have
V̇(χ) ≤ 0,

and can use Proposition 5.20 to prove asymptotic stability.

The shallow water equations

In this section we consider the case of a system where we have a Hamilto-
nian which is non-quadratic. To this end we use the example of the nonlinear
shallow water equations in the 1−dimensional spatial domain case. The dy-
namics of the nonlinear shallow water equations are given by

[
∂th
∂tu

]

=

[
0 d
d 0

] [
δhH = ∗h ∗ u

δuH = 1
2 ∗ u ∗ u + gh

]

,

together with the boundary variables (hu) |band (1
2u2 + gh) |b. The total

energy of the system is given by

H(h, u) =
1

2

∫

(h̃ũ2 + gh̃2)dz,
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5.2 Control of infinite-dimensional systems

and it satisfies the energy balance

dH

dt
= (h̃ũ)(

1

2
ũ2 + gh̃) |l0 .

We now study the stability of the system at a desired (or forced) height and a
zero velocity, i.e. at a point (h̄, 0), in the same way as stabilizing a transmis-
sion line at a forced voltage and zero current. We again consider a constant
input at one of its boundary. The objective again is to look for candidate Lya-
punov functions of the form

V(χ) = H(h, u) + Hs(ξ), Hs(ξ) = −ūξ,

with ū the constant input (the desired or the forced height h̄. where we wish
to stabilize our system). The resulting dynamics of the interconnected system
would be





ξ̇
∂th
∂tu



 =





0 0 · |0
0 0 d
0 d 0









∂Hs

∂ξ

δhH
δuH





δhH |0= −
∂Hs

∂ξ

fl = δhH |l; el = δuH |l .

The total energy is given by

Hcl(q, p, ξ) =
1

2

∫

h̃ũ2 + gh̃2 − ūξ,

with Hc(ξ) = −ūξ being the energy (unbounded) of the source system. Note
that ū corresponds to the constant input and does not in any way relate to the
velocity u. The composed system then admits Casimirs of the form

F (h, u, ξ) =

∫

h̃(x, t)dz − ξ,

which yields the Lyapunov function

V(χ) =
1

2

∫

(h̃ũ2 + gh̃2)dz − ū(

∫

h̃(x, t)dz + c),

by choosing the constant input ū = gh̄ and c = − 1
2 h̄ we have the following

incremental Lyapunov function

V(χ) =
1

2

∫

h̃ũ2 + g(h̃ − h̄)2.
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5 Control of port-Hamiltonian systems

The time derivative of this Lyapunov function would then satisfy

V̇(χ) = flel,

we can then add the boundary control law

fl = −αel, α > 0.

So that we have V̇(χ) ≤ 0 and hence can use Proposition 5.20 to prove asymp-
totic stability.

Remark 5.23. The constant source (the controller) in this case could be seen
as a water reservoir with a given height and this is precisely the height at
which we stabilize the ”plant”system. In this way we could also stabilize a
series of interconnected canals all at the same height and the zero velocity.
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6

Spatial discretization of the shallow
water equations

”A love affair with a pet hypothesis can waste years of precious time.”
- Peter Medawar.

In the previous chapters, we have seen how the framework of port-Hamil-
tonian systems can be used for modeling and analysis of infinite-dimensional
systems, such as the n−dimensional wave equation, fluid dynamical systems,
as well as the ideal transmission line. Hereto a special type of infinite-di-
mensional Dirac structure has been introduced, based on Stokes’ theorem.
Physically, this Stokes-Dirac structure captures the basic balance laws of the
system, like charge and the flux conservation or mass balance. We have seen
in Chapter 2 how the port-Hamiltonian formulation is a non-trivial extension
of the Hamiltonian formulation of partial differential equations (PDEs) by
means of Poisson structures (see e.g. [34]), as in the latter case it is crucially
assumed that the boundary conditions are such that the energy-flow through
the boundary of the spatial domain is zero. We have also seen how the for-
mulation in terms of Dirac structures, instead of a Poisson structure, allows a
non-zero boundary energy-flow.

As stated in the introduction, one of the motivations to consider spatial dis-
cretization of an infinite-dimensional system is the interconnection of mixed
finite and infinite-dimensional port-Hamiltonian systems. In Section 5.2.5 we
considered the problem of stabilizing flow of water though a canal at a con-
stant height and the zero velocity. The control action was a constant input
at one of the boundary. Damping was then added through the boundary of
the system to ensure asymptotic stability. Both these elements, the constant
input and the dissipator at the boundary, are modeled as finite-dimensional
systems. From the control point of view of such (mixed finite and infinite-di-
mensional) systems, it may be crucial to approximate the infinite-dimensional
subsystem with a finite-dimensional one. The finite-dimensional approxima-
tion should be such that it is again a port-Hamiltonian systems which retains
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6 Spatial discretization of the shallow water equations

all the properties of the infinite-dimensional model, like energy balance and
other conserved quantities. Furthermore the approximation should also take
into account the constraints arising due to the interconnection of the infinite-
dimensional system with finite-dimensional systems though the boundary,
such that interconnected system (with the finite-dimensional approximation
of the infinite-dimensional system) again has the port-Hamiltonian structure.
It has been shown in [18] how the intrinsic Hamiltonian formulation sug-
gests finite element methods which result in finite-dimensional approxima-
tions which are again port-Hamiltonian systems. Given the port-Hamilto-
nian formulation of distributed parameter systems it is natural to use different
finite-elements for the approximation of functions and forms.

In this chapter, we consider spatial discretization of the shallow water equa-
tions, which are modeled as port-Hamiltonian systems in Chapter 2. We con-
sider spatial discretization of the system defined by (2.63) (a constant Stokes-
Dirac structure) and (2.69) (a non-constant Stokes-Dirac structure). We also
present some preliminary numerical results for the constant Dirac structure
case.

6.1 Spatial discretization of a Stokes-Dirac
structure with 1-D spatial domain.

In this section we consider spatial discretization of infinite-dimensional port-
Hamiltonian systems with a 1-D spatial domain, which is defined with re-
spect to the following constant Stokes-Dirac structure. In particular we con-
sider the case of spatial discretization of the shallow water equations, which
were modeled as infinite-dimensional port-Hamiltonian systems in Chapter
2

[
fh

fu

]

=

[
0 d
d 0

] [
eh

eu

]

[
fb

eb

]

=

[
−1 0
0 1

] [
eh |∂Z

eu |∂Z

]

,

fh = −
∂h

∂t
, fu = −

∂u

∂t
eh = δhH, eu = δuH,

with h being the height of the water level, u the velocity and H the Hamilto-
nian (the total energy of the system).

Our interest is in the discretization of the shallow water equations and we
focus on two different cases, namely 1) The linear shallow water equations
and 2) The nonlinear shallow water equations. In both the cases the intercon-
nection structure remains the same and what changes is the expression for the
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

total energy. First we discuss the discretization of interconnection structure
and then their respective Hamiltonians

The spatial discretization proposed here consists of two steps. First, the
interconnection structure of the distributed parameter model is spatially dis-
cretized Next, the constitutive relations of the energy storage part of the sys-
tem to be discretized are approximated.

6.1.1 Tessellation

At first, we have to tessellate the spatial domain with cells or elements de-
noted as Zab with spatial manifold [Si−1, Si] such that

Z = {
N⋃

1

Zab, 1 ≤ i ≤ N + 1, 0 < Si−1 < Si < l}.

It is convenient to introduce a reference element Ẑ with the spatial manifold

[−1, 1] such that each element Zab is mapped to the reference element Ẑ using
the mapping

FZ : Ẑ → Zab : z =
1

2

(
Si−1(1 − ζ) + Si(1 + ζ)

)
,

where ζ is the coordinate of the reference element Ẑ.

6.1.2 Spatial discretization of the interconnection struc ture

Consider a part of the canal between two points a and b (0 ≤ a ≤ b ≤ L). The
spatial manifold corresponding to this part of the canal is Zab = [a, b]. The
fluid flow at the point a is defined fB

a and the Bernoulli function is denoted
by eB

a . Similarly with the fluid flow and the Bernoulli function at point b.The
relations between the boundary variables fB

a , eB
a , fB

b , eB
b and the efforts eh, eu

are
eB

a (t) = eh(t, a), eB
b (t) = eh(t, b),

fB
a (t) = eu(t, a), fB

b (t) = eu(t, b).

The discretization method follows similar procedure as that of an ideal trans-
mission line as in [18].
Approximation of fh and fu: The infinitesimal height fh and fu are approxi-
mated on Zab as

fh(t, z) = fh
ab(t)ω

h
ab(z)

fu(t, z) = fu
ab(t)ω

u
ab(z), (6.1)
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6 Spatial discretization of the shallow water equations

Exact Approximated

Si+1 SN+1S1 a = Si−1
b = Si

Zab

Figure 6.1: An illustration of the approximation of a flow variable.

Exact Approximated

S1 a = Si−1
Si+1

Zab

SN+1b = Si

Figure 6.2: An illustration of the approximation of an effort variable.
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

where the one-forms ωh
ab and ωu

ab satisfy
∫

Zab

ωh
ab = 1,

∫

Zab

ωu
ab(z) = 1. (6.2)

Since the flow variables are approximated per element they can be discontin-
uous across the nodes of the elements and hence they are multivalued at the
nodes as illustrated in Figure 6.1.
Approximation of eh and eu: The co-energy variables eh(z, t) and eu(z, t) are
approximated as

eh(t, z) = eh
a(t)ωh

a (z) + eh
b (t)ωh

b (z) (6.3)

eu(t, z) = eu
a(t)ωu

a (z) + eu
b (t)ωu

b (z), (6.4)

where the zero-forms ωh
a , ωh

b , ωu
aωb

u ∈ Ω0(Zab) satisfy

ωh
a (a) = 1, ωh

a (b) = 0, ωh
a(a) = 0, ωh

b (b) = 1,

ωu
a (a) = 1, ωu

a (b) = 0, ωu
b (a) = 0, ωu

b (b) = 1.
(6.5)

such that the efforts are always continuous across the edges of the elements
as illustrated in Figure 6.2.

This gives

fh
ab(t)ω

h
ab(z) = eu

a(t)dωu
a + eu

b (t)dωu
b (z) (6.6)

fu
ab(t)ω

u
ab(z) = eh

a(t)dωh
a + eh

b (t)dωh
b (z). (6.7)

Compatibility of forms: (1) The one form ωh
ab(z) and functions ωu

a (z) and
ωu

b (z) should be chosen in such a way that for every eu
a , eu

b we can find fh
ab

such that (6.6) is satisfied.
(2) The one form ωu

ab(z) and functions ωh
a (z) and ωh

b (z) should be chosen in
such a way that for every eh

a , eh
b we can find fab

u such that (6.7) is satisfied. The
above compatibility conditions imply the following relations between the one
form ωh

ab(z) and the functions ωu
a (z) and ωu

b (z) chosen in the approximation
of eh and eu. Take eu

b = 0. Then (6.6) is true if and only if dωu
a = cωh

ab for
a constant c. Integrating this over Zab yields ωu

a (b) − ωu
a (a) = c

∫

Zab
ωh

ab(z).
From (6.2) and (6.6) we have c = −1. Therefore

dωu
a = −ωh

ab. (6.8)

By choosing eu
a = 0, we can prove that

dωb
u = ωh

ab. (6.9)

Using similar arguments it can also be shown that

dωh
a = −ωu

ab, dωh
b = ωab

u . (6.10)
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6 Spatial discretization of the shallow water equations

As a consequence of the compatibility conditions the functions ωh
a , ωh

b , ωu
a , ωu

b

are completely determined by the one-forms ωh
ab and ωu

ab. We also have the
following properties of the corresponding zero and one forms:

Proposition 6.1. [18]ωh
a , ωh

b , ωu
a , ωb

u, ωh
ab and ωu

ab satisfy

1) ωh
a(z) + ωh

b (z) = 1.

2) ωu
a (z) + ωb

u(z) = 1.

3)
∫

Zab
ωh

a(z)ωh
ab(z) +

∫

Zab
ωh

b (z)ωh
ab(z) = 1.

4)
∫

Zab
ωu

a (z)ωu
ab(z) +

∫

Zab
ωu

b (z)ωu
ab(z) = 1.

5)
∫

Zab
ωh

a(z)ωh
ab(z) +

∫

Zab
ωu

b (z)ωu
ab(z) = 1.

Proof. From, d(ωh
a (z) + ωh

b (z)) = 0 ⇒ ωh
a(z) + ωh

b (z) = ωh
a (0) + ωh

b (0) = 1,
from (6.5).
2) From (6.8,6.9) d(ωu

a (z) + ωu
b (z)) = 0 ⇒ ωu

a (z) + ωu
b (z) = ωu

a (0) + ωu
b (0) = 1,

from(6.5).
3)
∫

Zab
ωh

a (z)ωh
ab(z) +

∫

Zab
ωh

b (z)ωh
ab(z) = 1 =

∫

Zab
(ωh

a (z) + ωh
b (z))ωh

a (z) =
∫

ωh
a (z) = 1, from (6.2).

4)
∫

Zab
ωu

a (z)ωu
ab(z) +

∫

Zab
ωu

b (z)ωu
ab(z) =

∫

Zab
(ωu

a (z) + ωu
b (z))ωu

ab(z) =
∫

Zab
ωu

ab(z) = 1.

5)
∫

Zab
ωh

a (z)ωh
ab(z) +

∫

Zab
ωu

b (z)ωu
ab(z) = −

∫
d(ωh

a (z)ωh
a (z)) = ωh

a(a)ωu
a (a) −

ωh
a (b)ωu

a (b), from (6.5).

The discretized interconnection structure is then obtained as follows: By
substituting (6.8) and (6.9) into (6.6), we get

fh
ab(t) = eu

a(t) − eu
b (t), (6.11)

similarly

fu
ab(t) = eh

a(t) − eh
b (t). (6.12)

The following expression describes the spatially discretized interconnection
structure of the considered part of the canal











eB
a

eB
b

fB
a

fB
b

fh
ab

fu
ab











=











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 −1
1 −1 0 0

















eh
a

eh
b

eu
a

eh
b







. (6.13)
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

The net power of the considered part of the canal is
∫

Zab

eh(t)fh(t) +

∫

Zab

eu(t)fu(t) − eB
a fB

a + eB
b fB

b . (6.14)

We then have

Pnet
ab = [αabe

h
a+(1−αab)e

h
b ]fh

ab+[(1−αab)e
u
a+αabe

u
b ]fu

ab−eB
a fB

a +eB
b fB

b , (6.15)

where αab :=
∫

Zab
ωh

a(z)ωh
ab(z). The above expression is used for identify-

ing the port variables in the discretized interconnection structure. The flow
variable corresponding to the mass density is fh

ab and the effort variable is
[αabe

h
a + (1−αab)e

h
b ] and similarly the flow variable corresponding to the ve-

locity is fu
ab and the corresponding effort variable is [(1−αab)e

u
a +αabe

u
b ]. Thus

by defining

eh
ab := [αabe

h
a + (1 − αab)e

h
b ]

eu
ab := [(1 − αab)e

u
a + αabe

u
b ], (6.16)

and the expression for Pnet
ab becomes

Pnet
ab :=< eab | fab >= fh

abe
h
ab + fab

u eu
ab − eB

a fB
a + eB

b fB
b . (6.17)

This gives






−1 0 αab αba

0 −1 0 0
0 0 0 0
0 0 −1 1













eh
ab

eu
ab

eB
a

eB
b







+







0 0 0 0
0 0 αba αab

1 0 −1 1
0 1 0 0













fh
ab

fu
ab

fB
a

fB
b







= 0, (6.18)

where αba = 1 − αab. The above equation represents the spatially discretized
interconnection structure, abbreviated as

Dab = {(fab, eab) ∈ R
8 : Eabeab + Fabfab = 0}. (6.19)

It can easily be shown that the above subspace Dab is a Dirac structure with
respect to the bilinear form

<< (f1
ab, e

1
ab), (f

2
ab, e

2
ab) >>:=< e1

ab, f
2
ab > + < e2

ab, f
1
ab > . (6.20)

6.1.3 Approximation of the energy part

After the spatial discretization of the interconnection structure, the next step
is to discretize the constitutive relations of the energy storage. Recall that
in the port-Hamiltonian representation the system is specified by its Dirac
structure, the interconnection structure, together with its Hamiltonian, the
constitutive relations of the energy storage. We now discuss both of the above
mentioned cases individually.
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6 Spatial discretization of the shallow water equations

The linear shallow water equations

We consider the dynamics of the shallow water equations, linearized around
a height hl and zero velocity, i.e. around (hl, 0). These are derived as follows:
Consider small variations of the system around (hl, 0) and denote

h(t, z) = hl + εη(t, z)

u(t, z) = εu′(t, z). (6.21)

Substituting (6.21) in the shallow water equations given by Equation (2.64)
and taking the limit as ε → 0, we get the following

∂tη + d(hl ∗ u′) = 0

∂tu
′ + d(g ∗ η) = 0. (6.22)

For sake of consistent notation throughout, we replace η in (6.22) by h and u′

by u. This gives us the following linear shallow water equations

∂th + d(hl ∗ u) = 0

∂tu + d(g ∗ h) = 0.

The total energy in this case is given by

H =
1

2

∫

Z

[hl(∗u)u + g(∗h)h].

Both the flow variables fh and fu and the energy variables h and u are one-
forms. Since fh and fu are approximated by (6.1), and they are related to h
and u by (6.11) and (6.12), it is consistent to approximate h and u on Zab in
the same way by

h(t, z) = hab(t)ω
h
ab(z)

u(t, z) = uab(t)ω
u
ab(z),

(6.23)

where

− dhab(t)
dt

= fh
ab(t), − duab(t)

dt
= fu

ab(t) . (6.24)

Observe that hab represents the total amount of water in the considered part
of the canal and uab represents the velocity in the same part. The kinetic en-
ergy as a function of the energy variable u is given by

∫

Zab

1
2hl(∗u(t, z)u(t, z).

Approximation of the infinite-dimensional energy variable u by (6.23) means
that we restrict the infinite-dimensional space of one-forms Ω1(Zab) to its one-
dimensional subspace spanned by ωu

ab. This leads to the approximation of the
kinetic energy of the considered part of the canal by

Hu
ab(uab(t)) =

C1

2
hlu

2
ab,
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

where

C1 =

∫

Zab

(∗ωu
ab(z))ωu

ab(z).

Note that this is nothing else than the restriction of the kinetic energy function
to the one-dimensional subspace of Ω1(Zab) spanned by ωu

ab(z). Similarly the
potential energy is approximated by

Hh
ab(hab(t)) =

C2

2
gh2

ab,

where

C2 =

∫

Zab

(∗ωh
ab(z))ωh

ab(z).

Therefore the total energy of the considered part of the canal is approximated
by

Hab(hab, uab) = Hu
ab(uab) + Hh

ab(hab)

=
1

2
(C1hlu

2
ab + C2gh2

ab).

In order to describe the discretized dynamics, we equate the discretized effort
variables eh

ab, e
u
ab of the discretized interconnection structure defined in (6.16)

with co-energy variables corresponding to the total approximated energy Hab

of the considered part of the canal

eh
ab = ∂H(hab,uab)

∂hab
(t) = C2ghab

eu
ab = ∂H(hab,uab)

∂uab
(t) = C1hluab.

(6.25)

The equations (6.18) (the interconnection structure) together with (6.24),(6.25)
represent a finite dimensional model of the shallow water equations. To sum-
up we obtain the following set of DAEs for a single lump of the finite-dimen-
sional model

− dhab

dt
= hlu |a −hlu |b

− duab

dt
= gh |a −gh |b

C2ghab = αab(gh |a) + αba(gh |b)

C1hluab = αba(hlu |a) + αab(hlu |b).

(6.26)

Spatial discretization of the linear shallow water equatio ns

The canal is split into n parts. The ith part (Si−1, Si) is discretized as ex-
plained in the previous subsections, where a = Si−1 and b = Si. The re-
sulting model consists of n sub models each of them representing a port-
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6 Spatial discretization of the shallow water equations

Hamiltonian system. Since a power conserving interconnection of a number
of port-Hamiltonian systems is again a port-Hamiltonian system, the total
discretized system is also a port-Hamiltonian system, whose interconnection
structure is given by the composition of the n Dirac structures on (Si−1, Si),
while the total Hamiltonian is the sum of individual Hamiltonians.

H(h, u) =

n∑

i=1

[C1ihluSi−1,Si
+ C2igh2

Si−1,Si
].

Here h = (hS0,S1
, hS1,S2

, ..., hSn−1,Sn
)T are the discretized heights and u =

(uS0,S1
, uS1,S2

, ..., uSn−1,usn
) are the discretized velocities. The total discretized

model still has two ports. The port (fB
S0

, eB
S0

) = (fB
0 , eB

0 ) is the incoming port

and the port (fB
Sn

, eB
Sn) = (fB

S , eB
S ) is the outgoing port, resulting in the energy

balance of the discretized model

dH(h(t), u(t))

dt
− eB

0 fB
0 + eB

S fB
S = 0.

Equation (6.11) for the ith part becomes fh
Si−1,Si

(t) = eu
Si−1

(t)− eu
Si

(t). Taking

into account (6.24) and eu
S0

= fB
0 , eSn

= fB
S , we have dh(t)

dt
= fB

0 − fB
S , where

h :=
n∑

i=1

hSi−1,Si
is the total mass (amount of water) in the canal, this repre-

sents mass conservation. Another conserved quantity is the velocity, which

is obtained from (6.12), (6.24), i.e. du(t)
dt

= eB
0 − eB

S , where u =
n∑

i=1

uSi−1,Si
,

represents the average velocity in the canal.

The nonlinear shallow water equations

The dynamics of the nonlinear shallow water equations are given by (2.64)

∂th + d(hu) = 0

∂tu + d(gh) = 0.

The total energy in this case is given by

H =
1

2

∫

Z

[(∗u)h(∗u) + g(∗h)h].

As before, the flow variables fh and fu and the energy variables h and u
are one-forms and they are approximated in the same way as in (6.24). In
the nonlinear case, the kinetic energy as a function of the energy variable u is
given by

∫

Zab

1
2 (∗u(t, z)h(∗u(t, z)). Approximation of the infinite-dimensional

energy variable u by (6.23) means that we restrict the infinite-dimensional
space of one-forms Ω1(Zab) to its one-dimensional subspace spanned by ωu

ab.
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

This leads to the approximation of the kinetic energy of the considered part
of the canal by

Hu
ab(uab(t)) =

1

2
C1habu

2
ab,

where

C1 =

∫

Zab

(∗ωu
ab(z))ωu

ab(z)(∗ωu
ab(z)).

Note that this is nothing else than the restriction of the kinetic energy function
to the one-dimensional subspace of Ω1(Zab) spanned by ωh

ab(z). Similarly the
potential energy is approximated by

Hh
ab(hab(t)) =

1

2
C2gh2

ab,

where

C2 =

∫

Zab

(∗ωh
ab(z))ωh

ab(z).

Therefore the total energy of the considered part of the canal is approximated
by

Hab(hab, uab) = Hu
ab(uab) + Hh

ab(hab)

=
1

2
[C1habu

2
ab + C2gh2

ab].

In order to describe the discretized dynamics, we equate the discretized effort
variables eh

ab, e
u
ab of the discretized interconnection structure defined in (6.16)

with co-energy variables corresponding to the total approximated energy Hab

of the considered part of the canal

eh
ab = ∂H(hab,uab)

∂hab
(t) = C1

2 u2
ab + C2ghab

eu
ab = ∂H(hab,uab)

∂uab
(t) = C1habuab.

(6.27)

The equations (6.18) (the interconnection structure) together with (6.24),(6.27)
represent a finite dimensional model of the non-linear shallow water equa-
tions. To sum-up we obtain the following set of DAEs for a single lump of the
finite-dimensional model

− dhab

dt
= hu |a −hu |b

− duab

dt
= (1

2u2 + gh) |a −(1
2u2 + gh) |b

C1

2 u2
ab + C2ghab = αab(

1
2u2 + gh |a) + αba(1

2u2 + gh |b)

C1habuab = αba(hu |a) + αab(hu |b).

(6.28)
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6 Spatial discretization of the shallow water equations

Spatial discretization of the nonlinear shallow water equa tions

The spatial discretization follows the same procedure as in the case of linear
shallow water equations. The total Hamiltonian is now given by

H(h, u) =
n∑

i=1

[C1ihSi−1,Si
uSi−1,Si

+ C2igh2
Si−1,Si

],

resulting in the energy balance of the discretized model as

dH(h(t), u(t))

dt
− eB

0 fB
0 + eB

S fB
S = 0,

with (fB
0 , eB

0 ) the incoming port and (fB
S , eB

S ) the outgoing port. It can also
be easily verified that the mass and the velocity conservation laws also hold
in the case of the nonlinear shallow water equations.

The input state output model

In this section we write the discretized system in the input state output port-
Hamiltonian model for a single spatial element. For our analysis we use the
following choices for the approximating zero and one forms. The zero-forms
are approximated as constant density functions, i.e.

ωh,u
ab =

1

b − a
,

and the zero-forms as linear splines, i.e.

ωh,u
a =

b − z

b − a
, ωh,u

b =
z − a

b − a
.

This would result in the following values for the constants in (6.44).

αab = αba =
1

2
.

We then have the following

[
fh

ab

fu
ab

]

=

[
0 −2
2 0

] [
eh

ab

eu
ab

]

+

[
2 0
0 2

] [
fB

a

−eB
b

]

[
eB

a

fB
b

]

=

[
2 0
0 2

] [
eh

ab

eu
ab

]

+

[
0 −1
1 0

] [
fB

a

−eB
b

]

. (6.29)

The above equation is an input output representation of (6.18), with inputs
(fB

a ,−eB
b ) and outputs (eB

a , fB
b ).
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6.1 Spatial discretization of a Stokes-Dirac structure with 1-D spatial domain.

Discussion

It is interesting to note here that if we consider a periodic domain then we
should only consider odd number of spatial lumps. The reason for this can
be explained as follows: Consider a periodic domain with only two lumps,
with the input state output model (6.29) of each of the lump in the following
form

ẋi = Aix + Biui

yi = Cix + Diui, i = 1, 2.

In terms of the discretized shallow water equations

Ai =

[
0 −2
2 0

]

, Bi =

[
2 0
0 2

]

Ci =

[
2 0
0 2

]

, Di =

[
0 −1
1 0

]

.

We know from system theory that an interconnection of the two such lumps,
in the standard plant controller interconnection constraints

u1 = −y2

u2 = y1,

is well-posed if and only if the following two conditions are satisfied

det[I + D1D2] 6= 0

det[I + D2D1] 6= 0. (6.30)

It can easily be seen that for the input state output model of the shallow water
equations, the above conditions are not satisfied and hence we cannot inter-
connect the two spatially distributed lumps. Same is the case if we consider
any even number of lumps. This is not the case if we consider odd number of
lumps. Hence its crucial that in our analysis we consider only an odd number
of lumps for a periodic domain.

For the sake of illustration, of an input output model, we present a case
where we have a periodic domain and we take three spatial lumps, i.e. n = 3.
In this case we would have four nodes and since the domain is periodic the
fourth and the first nodes are the same and hence the port-variables at the 1st
and the 4th node would hold same values. The dynamics of the discretized
system would then be given by the following











fh
S1,S2

fh
S2,S3

fh
S3,S1

fu
S1,S2

fu
S2,S3

fu
S3,S1











=











0 0 0 0 −2 2
0 0 0 2 0 −2
0 0 0 −2 2 0
0 −2 2 0 0 0
2 0 −2 0 0 0
−2 2 0 0 0 0





















eh
S1,S2

eh
S2,S3

eh
S3,S1

eu
S1,S2

eu
S2,S3

eu
S3,S1











. (6.31)
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6 Spatial discretization of the shallow water equations

where

fh
SiSj

= −
dhSi,Sj

dt
, fh

SiSj
= −

dhSi,Sj

dt
,

eh
SiSj

=
∂H(hSi,Sj

,uSi,Sj
)

∂hSi,Sj

, eu
SiSj

=
∂H(hSi,Sj

,uSi,Sj
)

∂uSi,Sj

, i, j = 1, 2, 3; i 6= j.

The conservation of energy follows from the skew-symmetry of the 6 × 6
interconnection matrix in (6.31), in other words we have

dH

dt
(h, u) = 0.

since the domain is periodic (or closed).

6.2 Spatial discretization of a non-constant Dirac
structure

So far we have discussed spatial discretization of a constant Stokes-Dirac
structure, where the Dirac structure does not depend on the energy variables.
In this section we discuss spatial discretization of a non-constant Stokes-Dirac
structure, where the Dirac structure now depends on the energy variables. To
this end we use the example of the shallow water equations with a additional
velocity component as discussed in Chapter 2, Equation (2.69). The Dirac
structure is given by the following





fh

fu

fv



 =





0 d 0
d 0 − 1

∗h
d(∗v)

0 1
∗h

d(∗v) 0









eh

eu

ev









fb

eb

e′v



 =





0 1 0
−1 0 0
0 0 1

∗h









eu |∂W

eh |∂W

ev |∂W



 , (6.32)

with
fh = −∂h

∂t
, fu = −∂u

∂t
, fv = − dv

dt

eh = δhH, eu = δuH, ev = δvH
.

6.2.1 Spatial discretization of the interconnection struc ture

Consider a part of the canal between two points a and b (0 ≤ a < b ≤ L).
The spatial manifold corresponding to this part of the canal is Zab = [a, b].
The mass flow through point a is denoted by eB

a and the Bernoulli function
by fB

a , similarly for the point b with eB
b and fB

b respectively.
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6.2 Spatial discretization of a non-constant Dirac structure

Approximation of fh,fu and fv : As in the case of a constant Dirac structure,
we approximate the infinitesimal height fh, the velocities fu, fv on Zab as

fh(t, z) = fh
ab(t)ω

h
ab(z)

fu(t, z) = fu
ab(t)ω

u
ab(z)

fv(t, z) = fv
ab(t)ω

v
ab(z), (6.33)

where again the one-forms ωh
ab, ωu

ab and ωv
absatisfy

∫

Zab

ωh
ab = 1,

∫

Zab

ωu
ab(z) = 1,

∫

Zab

ωv
ab(z) = 1. (6.34)

Approximation of eh and eu: The co-energy variables eh(z, t) and eu(z, t) are
approximated as

eh(t, z) = eh
a(t)ωh

a (z) + eh
b (t)ωb

h(z)

eu(t, z) = eu
a(t)ωu

a (z) + eu
b (t)ωb

u(z)

ev(t, z) = ev
a(t)ω

a
v (z) + ev

b (t)ω
v
b (z), (6.35)

where the zero-forms ωh
a , ωh

b , ωu
a , ωu

b , ωv
a, ωv

b ∈ Ω0(Zab) satisfy

ωh
a (a) = 1, ωh

a(b) = 0, ωh
b (a) = 0, ωh

b (b) = 1,
ωu

a (a) = 1, ωu
a (b) = 0, ωu

b (a) = 0, ωu
b (z) = 1,

ωv
a(a) = 1, ωv

a(b) = 0, ωv
b (a) = 0, ωv

b (b) = 1.

Furthermore we also approximate ∗v(t, z) in (6.32) with a zero form as (in-
stead of approximating v(t, z) with a one form, see remarks towards the end
of the section)

∗v(t, z) = va(t)ωa(t) + vb(t)ωb(t), (6.36)

where the zero forms ωa(z) and ωa(z) satisfies

ωa(a) = 1, ωa(b) = 0,
ωb(a) = 0, ωb(b) = 1.

this gives

fh
ab(t)ω

h
ab(z) = eu

a(t)dωu
a (z) + eu

b (t)dωu
b (z) (6.37)

fu
ab(t)ω

u
ab(z) = eh

a(t)dωh
a (z) + eh

b (t)dωh
b (z)−

1

hab(t) ∗ ωh
ab(z)

(va(t)dωa(t) + vb(t)dωb(t))(e
v
a(t)ωv

a(z) + ev
b (t)ω

v
b (z)) (6.38)

fv
ab(t)ω

v
ab(z) =

1

hab(t) ∗ ωh
ab(z)

(va(t)dωa(t) + vb(t)dωb(t))(e
u
a(t)ωu

a (z) + eu
b (t)ωu

b (z)), (6.39)
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6 Spatial discretization of the shallow water equations

where the height h(z, t) is approximated as

h(z, t) = hab(t)ω
h
ab(z), where,

∫

Zab

ωh
ab(z) = 1.

Compatibility of forms: In the first line of the above equation the one form
ωh

ab and the functions ωu
a (z) and ωb

u(z) should be chosen in such a way that for
every eu

a and eu
b , we can find fab

h such that (6.37) is satisfied. The satisfaction
of such conditions leads to the following equations

fh
ab(t) = eu

a(t) − eu
b (t). (6.40)

The above expression can also be obtained by integrating (6.37) over Zab and
substituting the conditions on the zero and one forms (6.34,6.35). Similar sat-
isfaction of compatibility conditions for (6.37) gives us the following equa-
tions

fu
ab(t) = eh

a(t) − eh
b (t)−

1

hab(t)
(c1va(t)ev

a(t) + c2va(t)eb
v(t) + c3vb(t)e

v
a(t) + c4vb(t)e

v
b (t)), (6.41)

where the constants are given by (again this is obtained by integrating over
Zab)

c1 =
∫

Zab

dωa

∗ωh
ab

ωa
v , c2 =

∫

Zab

dωa

∗ωh
ab

ωv
b ,

c3 =
∫

Zab

dωb

∗ωh
ab

ωa
v , c4 =

∫

Zab

dωb

∗ωh
ab

ωv
b .

Similar satisfaction of compatibility conditions for (6.39) and integrating it
over Zab yields

fab
v (t) =

1

hab(t)
(c′1va(t)eu

a(t) + c′2va(t)eu
b (t) + c′3vb(t)e

u
a(t) + c′4vb(t)e

u
b (t)),

where

c′1 =
∫

Zab

dωa

∗ωh
ab

ωa
u, c′2 =

∫

Zab

dωa

∗ωh
ab

ωu
b ,

c′3 =
∫

Zab

dωb

∗ωh
ab

ωa
u, c′4 =

∫

Zab

dωb

∗ωh
ab

ωu
b .

For the sake of clarity the argument t is omitted in the rest of the section. The
relations describing the spatially discretized interconnection structure of the

146



6.2 Spatial discretization of a non-constant Dirac structure

part of the canal are given by
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eB
a

eB
b

fB
a

fB
b

eB
va

eB
vb

fh
ab

fu
ab

fv
ab

3

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
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2

6

6
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6

4

eh
a

eh
b
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a

eu
b
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a

ev
b

3

7

7

7

7

7

7

5

.

where k1 = 1
hab

(c1va + c3vb) and k2 = 1
hab

(c2va + c4vb).The net power in the
considered part of the canal is

∫

Zab

[ehfh + eufu + evfv] − eB
a fB

a + eB
b fB

b .

We then get

Pnet
ab = [αabe

h
a + (1 − αab)e

h
b ]fh

ab

+ [(1 − αab)e
u
a + αabe

u
b ]fu

ab + [β1e
v
a + β2e

v
b ]f

v
ab, (6.42)

where αab :=
∫

Zab
ωh

a (z)ωh
ab(z), αba :=

∫

Zab
ωh

b (z)ωh
ab(z), β1 :=

∫

Zab
ωv

a(z)ωv
ab(z),

β2 =
∫

Zab
ωv

b (z)ωv
ab(z). We use the above expression for identifying the port

variables in the discretized interconnection structure. The flow variable cor-
responding to the mass density is fh

ab and the effort variable is αabe
h
a + (1 −

αab)e
h
b . Thus we define

eh
ab := [αabe

h
a + (1 − αab)e

h
b ]

eu
ab := [(1 − αab)e

u
a + αabe

u
b ]

eu
ab := [β1e

v
a + β2e

v
b ]. (6.43)

In addition to the properties of the zero and one forms in Proposition 6.1, we
also have the following properties which are crucial in deriving the expres-
sion for power balance in the finite-dimensional case

Proposition 6.2. Under the assumption that ωv
ab = ωu

ab, the constants
αab, αba, β1, β2, c1, c2, c3, c4, c

′
1, c

′
2, c

′
3, c

′
4 satisfy

αbac1 = β1c
′
1, αbac3 = β1c

′
3, αbac2 = β2c

′
1, αbac4 = β2c

′
3,

αabc1 = β1c
′
2, αabc3 = β1c

′
4, αabc2 = β2c

′
2, αabc4 = β2c

′
4.

(6.44)

Proof. We know from Proposition 6.1 that

ωu
a (z) + ωu

b (z) = 1.
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6 Spatial discretization of the shallow water equations

Hence, from satisfying of the compatibility conditions of (6.37,6.38,6.39) we
have the following

(c1 + c2)ω
u
ab = d(ωa+ωb)

∗ωh
ab

(ωv
a + ωv

b )

(c3 + c4)ω
u
ab = d(ωa+ωb)

∗ωh
ab

(ωv
a + ωv

b )

(c′1 + c′2)ω
v
ab = d(ωa+ωb)

∗ωh
ab

; (c′3 + c′4)ω
v
ab = d(ωa+ωb)

∗ωh
ab

.

using the above equalities the relations (6.44) can be easily proved.

Then, the net expression for power becomes

Pnet
ab := fh

abe
h
ab + fu

abe
u
ab + fv

abe
v
ab − eB

a fB
a + eB

b fB
b . (6.45)

Remark 6.3. Observe that the expression for energy balance is same as in
the (h, u) case, see Equation (6.15). In this case we see that the additional port
variables arising due to the velocity component v does not play any role. This
property was also observed in the infinite-dimensional case in Chapter 2.

Now by substituting

eh
a = eB

a , eh
b = eB

b , eu
a = fB

a , eu
b = fB

b , ev
a = fB

v , ev
b = ev

b ,

yields











−1 0 0 αab αba 0
0 −1 0 0 0 0
0 0 1 0 0 −β2

0 0 0 0 0 0

0 0 0 −1 1 c2va+c4vb

hab

0 0 0 0 0 0





















eh
ab

eu
ab

ev
ab

eB
a

eB
b

ev
b











+












0 0 0 0 0 0
0 0 0 αba αab 0
0 0 0 0 0 −β1

1 0 0 −1 1 0

0 1 0 0 0 c1va+c3vb

hab

0 0 1 − c′1va+c′3vb

hab
− c′2va+c′4vb

hab
0






















fh
ab

fu
ab

fv
ab

fB
a

fB
b

fv
b











. (6.46)

The above equation represents the spatially discretized interconnection struc-
ture, abbreviated as

Dab = {(fab, eab) ∈ R
12 : Eabeab + Fabfab = 0}.

It can easily be shown that the above subspace Dab is a Dirac structure with
respect to the bilinear form

<< (fab
1 , eab

1 ), (fab
2 , eab

2 ) >>:=< eab
1 , fab

2 > + < eab
2 , fab

1 > . (6.47)
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6.2 Spatial discretization of a non-constant Dirac structure

6.2.2 Approximation of the energy part

For the discretization of the energy part we proceed as follows: The flow
variables fh, fu and fv and the energy variables h, u and v are one-forms.
Since fh, fu and fv are approximated by (6.33) and are related to h, u and v
by (6.32), it is consistent to approximate h,u and v on Zab in the same way by

h(t, z) = hab(t)ω
h
ab(z)

u(t, z) = uab(t)ω
u
ab(z)

v(t, z) = vab(t)ω
u
ab(z), (6.48)

where

−
dhab(t)

dt
= fh

ab(t),−
duab(t)

dt
= fu

ab(t),−
dvab(t)

dt
= fv

ab(t). (6.49)

Here hab represents the total amount of water in the considered part of the
canal and uab, vab the average velocities of the same part of the canal. The
kinetic energy as a function of the energy variables u and v is given by

∫

Zab

1

2
[(∗u(t, z))h(t, z)(∗u(t, z)) + (∗v(t, z))h(t, z)(∗v(t, z))].

Approximation of the infinite-dimensional energy variables u and v by (6.49)
means that we restrict the infinite-dimensional space of one-forms Ω1(Zab)
to its one-dimensional subspace spanned by ωh

ab, ω
u
ab, ω

v
ab. This leads to the

approximation of the kinetic energy of the considered part of the canal by

Hu,v
ab (hab, uab, vab) =

1

2
(C1habu

2
ab + C2habv

2
ab),

where

C1 =

∫

Zab

(∗ωu
ab(z))ωh

ab(z) ∗ ωu
ab(z)

C2 =

∫

Zab

(∗ωv
ab(z))ωh

ab(z) ∗ ωv
ab(z).

Note that this is nothing else than the restriction of the kinetic energy function
to the one dimensional subspace of Ω1(Zab). Similarly the potential energy is
approximated by

Hh
ab(hab) =

C3

2
gh2

ab,

where

C3 =

∫

Zab

(∗ωh
ab(z))ωh

ab(z).
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6 Spatial discretization of the shallow water equations

Therefore, the total energy in the considered part of the canal is approximated
by

Hab(hab, uab, vab) = Hu,v
ab (hab, uab, vab) + Hh

ab(hab)

=
1

2

(
C1habu

2
ab + C2habv

2
ab + C3gh2

ab

)
.

Next, in order to describe the discretized dynamics, we equate the discretized
effort variables eh

ab, e
u
ab, e

v
ab of the discretized interconnection structure de-

fined in (6.43) with co-energy variables corresponding to the total approxi-
mated energy Hab of the considered part of the canal

eh
ab = ∂H(hab,uab,vab)

∂hab
(t) = 1

2 (C1u
2
ab + C2v

2
ab) + C3ghab

eu
ab = ∂H(hab,uab,vab)

∂uab
(t) = C1habuab

ev
ab = ∂H(hab,uab,vab)

∂vab
(t) = C2habvab.

(6.50)

The equations (6.46) (the interconnected structure) together with (6.49),(6.50)
represent a finite-dimensional model of the shallow water equations with a
non-constant Stokes-Dirac structure. To sum up we have the following set of
equations for a single lump of the finite-dimensional model

−
dhab

dt
= hu |a −hu |b

−
duab

dt
=

1

2
(u2 + v2) + gh |a −

1

2
(u2 + v2) + gh |a

−

(
c2va + c4vb

hab

hv |a +
c1va + c3vb

hab

hv |b

)

−
dvab

dt
=

c
′

2va + c
′

4vb

hab

hu |a +
c
′

1va + c
′

3vb

hab

hu |b

1

2
(C1u

2
ab + C2v

2
ab) + C3ghab = αab(

1

2
(u2 + v2) + gh |a)

+ αba(
1

2
(u2 + v2) + gh |b)

C1habuab = αba(hu |a) + αab(hu |b)

C2habvab = β1(hv |a) + β2(hv |b). (6.51)

Spatial discretization of the entire system

The canal is split into n parts. The ith part (Si−1, Si) is discretized as ex-
plained in the previous subsections, where a = Si−1 and b = Si. The resulting
model consists of n submodels each of them representing a port-Hamiltonian

150



6.2 Spatial discretization of a non-constant Dirac structure

system. Since a power conserving interconnection of a number of port-Hamil-
tonian systems is again a port-Hamiltonian system, the total discretized sys-
tem is also a port-Hamiltonian system, whose interconnection structure is
given by the composition of the n Dirac structures on (Si−1, Si), while the
total Hamiltonian is the sum of individual Hamiltonians as

H(h, u) =
n∑

i=1

[C1ihluSi−1,Si
+ C2ihlvSi−1,Si

+ C3gh2
Si−1,Si

].

Here h = (hS0,S1
, hS1,S2

, ..., hSn−1,Sn
)T are the discretized heights and u =

(uS0,S1
, uS1,S2

, ..., uSn−1,usn
) and v = (vS0,S1

, vS1,S2
, ..., vSn−1,vsn

) are the dis-
cretized velocities. The total discretized model still has two ports. The port
(fB

S0
, eB

S0
) = (fB

0 , eB
0 ) is the incoming port and the port (fB

Sn
, eB

Sn) = (fB
S , eB

S )
is the outgoing port, resulting in the energy balance of the discretized model

dH(h(t), u(t), v(t))

dt
− eB

0 fB
0 + eB

S fB
S = 0.

Equation (6.40) for the ith part becomes fh
Si−1,Si

(t) = eu
Si−1

(t)− eu
Si

(t). Taking

into account (6.49) and eu
S0

= fB
0 , eSn

= fB
S , we have dh(t)

dt
= fB

0 − fB
S ,

where h :=
n∑

i=1

hSi−1,Si
is the total mass (amount of water) in the canal, this

represents mass conservation.

The input-state-output model

In this section we write the discretized system in the input state output model,
which could help us further analyze the properties of the finite-dimensional
model and compare it with the infinite-dimensional model. To simplify the
model we use the following choices for the approximating zero and one forms.
The zero-forms are approximated as constant density functions, i.e.

ωh,u,v
ab =

1

b − a
,

and the zero-forms as linear splines, i.e.

ωh,u,v
a =

b − z

b − a
, ωh,u,v

b =
z − a

b − a
.

This would result in the following values for the constants in (6.44).

αab = αba = β1 = β2 =
1

2

c1 = c′1 = c2 = c′2 = −
1

2

c3 = c′3 = c4 = c′4 =
1

2
.
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6 Spatial discretization of the shallow water equations

We then have the following





fh
ab

fu
ab

fv
ab



 =





0 −2 0
2 0 2K
0 −2K 0









eh
ab

eu
ab

ev
ab



+

[
2 0 0
0 2 0

] [
fB

a

−eB
b

]

[
eB

a

fB
b

]

=

[
2 0 0
0 2 0

] [
eh

ab

eu
ab

]

+

[
0 −1
1 0

] [
fB

a

−eB
b

]

,

where

K =
(va − vb)

hab

.

If we now apply the theory of Casimirs for an autonomous port-Hamiltonian
system from Chapter 4 for a single lump, we see that the Casimirs are all
functions C(h, u, v) which satisfy





0
0
0



 =





0 −2 0
2 0 2K
0 −2K 0









∂C
∂hab
∂C

∂uab
∂C

∂vab



 ,

from the above equation we have

∂C

∂uab

= 0

∂C

∂hab

−
(va − vb)

hab

∂C

∂v
= 0. (6.52)

This means that the Casimirs are independent of the u component of velocity
which is consistent with the continuous case. Equation (6.52) could be seen as
an analogue of (4.48), the solution of which would result in a class of functions
which would be conserved quantities for the finite-dimensional model.

Remark 6.4 (Higher order approximation). : In the above discretization we
approximated ∗v in Equation (6.36) in the expression of the Stokes-Dirac struc-
ture (6.32), by a zero-form instead of using the approximation of v as a one-
form. This is because throughout we considered the approximating one forms
to be constant density functions (see Figure 6.1) and with such a choice the
value of d(∗ωv

ab) in the discretized model would always be zero and hence
the discretization procedure would fail. We can however use another approx-
imations for the one-forms, instead of the constant density functions. These
one-forms should be chosen such that not only d(∗ωv

ab) 6= 0, but they should
also satisfy conditions (6.2) and the subsequent compatibility conditions. One
such choice could be to choose the approximating one-forms as

ωh,u,v
ab =

2z

b2 − a2
,
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6.3 Preliminary numerical results

and the following choice for the zero-forms .

ωh,u,v
a =

b2 − z2

b2 − a2
, ωh,u,v

b =
z2 − a2

b2 − a2
.

It can easily be seen that with the above choice d(∗ωv
ab) 6= 0 and they also

satisfy the compatibility conditions. The implications of using such higher
order approximations on the resulting finite-dimensional model remains to
be seen.

6.3 Preliminary numerical results

The spatial discretization of one dimensional linear and nonlinear shallow
water equations using port-Hamiltonian frame work are presented. The dis-
cretization typically consists of a set of ordinary differential and algebraic
equations in which we seek for the solution of flows and efforts (”energy
fluxes”) numerically. We have attempted to solve the resulting ordinary dif-
ferential equations using explicit time-stepping schemes like Euler-forward
and Runge-Kutta methods. We found that these time-stepping schemes are
numerically unstable and hence we use the Crank-Nicholson time-stepping
scheme. Investigation on explicit time-stepping schemes and their stability
analysis is beyond the scope of this study.

6.3.1 Harmonic wave type solution

We consider the following harmonic wave type solution of one dimensional
linear shallow water equation in a domain [0, L]:

h(z, t) = hl + η(z, t), η(z, t) = A sin(kz + ωt), and

u(z, t) =
(−Agk

ω

)

sin(kz + ωt). (6.53)

where A is the amplitude, k = 2πm/L the wave number, ω the actual fre-
quency, H the mean free surface depth, a2 = ghl, ω2 = a2k2 the dispersion
relation and m an integer. We have initialized the exact solution 6.53 in the
linear numerical code with parameters L = 1, m = 1, g = 1, and hl = 1;
and simulated the waves for one time period T = 2π/ω. Figure 6.3(a) shows
the space-time profile of the free surface perturbation around the mean wa-
ter depth from t = 0 to 1.0. The numerical discretization not only conserves
mass but also energy as shown in Figure 6.3(b). Below we give an analytical
proof of energy conservation in time for the discretized linear shallow water
equations.
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6 Spatial discretization of the shallow water equations

Proposition 6.5. Consider the discretized linear shallow water equations (6.26),
which for the i − th lump would be as follows

−
dhSi,Si+1

dt
= hlu |Si

−hlu |Si+1

−
duSi,Si+1

dt
= gh |Si

−gh |Si+1

ghSi,Si+1

∆z
= αSi,Si+1

(gh |Si
) + αSi+1,Si

(gh |Si+1
)

hluSi,Si+1

∆z
= αSi+1,Si

(hlu |Si
) + αSi,Si+1

(hlu |Si+1
).

(6.54)

In case of a uniform mesh ∆z would be constant. The total energy is given by

H(h, u) =
1

6 2∆z

n∑

i=1

[hlu
2
Si−1,Si

+ gh2
Si−1,Si

]. (6.55)

For a periodic boundary the efforts can be calculated by the following expression

eSi
= ... + fSi−3,Si−2

− fSi−2,Si−1
+ fSi−1,Si

+ fSi,Si+1
− fSi+1,Si+2

+ ...;

i = 1, ..., n. (6.56)

This expression is obtained by solving the last two equations of (6.54) simultaneously.
Therefore

eSi
− eSi+1

= ... − fSi−2,Si−1
+ fSi−1,Si

− fSi+1,Si+2
... (6.57)

where

eSi
=

[
gh |Si

hlu |Si

]

; fSi,Si+1
=

[
ghSi,Si+1

∆z
hluSi,Si+1

∆z

]

. (6.58)

Time stepping scheme: As stated before, we use the Crank-Nicholson time stepping
scheme. The time discretized equations take the form

h
tn+1

Si,Si+1
− h

tn+1

Si,Si+1
= −∆t

2 [(hlu |
tn+1

Si
−hlu |

tn+1

Si+1
) − (hlu |tn

Si
−hlu |tn

Si+1
)]

u
tn+1

Si,Si+1
− u

tn+1

Si,Si+1
= −∆t

2 [(gh |
tn+1

Si
−gh |

tn+1

Si+1
) − (gh |tn

Si
−gh |tn

Si+1
)].

(6.59)
In this case the energy of the system is conserved in time.
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6.3 Preliminary numerical results

Proof. Substituting the expressions for efforts from Equation (6.57) we get

h
tn+1

Si,Si+1
− h

tn+1

Si,Si+1
(tn)

= −
hl∆t

2
[(... − u

tn+1

si−2,Si−1
+ u

tn+1

Si−1,Si
− u

tn+1

Si+1,Si+2
+ ...) (6.60)

− (... − utn

si−2,Si−1
+ utn

Si−1,Si
− utn

Si+1,Si+2
+ ...)],

u
tn+1

Si,Si+1
− u

tn+1

Si,Si+1

= −
g∆t

2
[(... − h

tn+1

si−2,Si−1
+ h

tn+1

Si−1,Si
− h

tn+1

Si+1,Si+2
+ ...)

− (... − htn

si−2,Si−1
+ htn

Si−1,Si+2
− htn

Si+1,Si+2
+ ...)]. (6.61)

Multiplying the first part of the above equation by g
hSi,Si+1

(tn+1)+hSi,Si+1
(tn)

2∆z
,

we can write the the total discretized potential energy as

n∑

i=1

g
[

(h
tn+1

Si,Si+1
)2 − (htn

Si,Si+1
)2
]

2∆z

= −
n∑

i=1

{
ghl∆t

(∆z)2
{... − (u

tn+1

Si−2,Si−1
+ utn

Si−2,Si−1
)(h

tn+1

Si,Si+1
+ htn

Si,Si+1
)

+ (u
tn+1

Si−1,Si
+ utn

Si−1,Si
)(h

tn+1

Si,Si+1
+ htn

Si,Si+1
)

−(u
tn+1

Si+1,Si+2
+ utn

Si+1,Si+2
)(h

tn+1

Si,Si+1
+ htn

Si,Si+1
) + ...

}

.

Similarly, by multiplying the second part of Equation(6.61) by

hl
uSi,Si+1

(tn+1)+uSi,Si+1
(tn)

2∆z
the expression for the kinetic energy takes the fol-

lowing form

n∑

i=1

hl

[

(u
tn+1

Si,Si+1
)2 − (u

tn+1

Si,Si+1
)2
]

(∆z)2

= −
n∑

i=1

{
ghl∆t

(∆z)2
{... − (h

tn+1

si−2,Si−1
+ htn

si−2,Si−1
)(u

tn+1

Si,Si+1
+ utn

Si,Si+1
)

+ (h
tn+1

Si−1,Si
+ htn

Si−1,Si
)(u

tn+1

Si,Si+1
+ utn

Si,Si+1
)

−(h
tn+1

Si+1,Si+2
+ htn

Si+1,Si+2
)(u

tn+1

Si,Si+1
+ utn

Si,Si+1
) + ...

}

. (6.62)

Since we have a periodic domain and also since the summation is over the
entire domain, we can rewrite the right hand side of (6.62), by interchanging
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6 Spatial discretization of the shallow water equations

the indices, as follows

n∑

i=1

g
[

(h
tn+1

Si,Si+1
)2 − (htn

Si,Si+1
)2
]

2∆z

= −
n∑

i=1

{
ghl∆t

(∆z)2
{... − (u

tn+1

Si,Si+1
+ utn

Si,Si+1
)(h

tn+1

Si+2,Si+3
+ htn

Si+2,Si+3
)

+ (u
tn+1

Si,Si+1
+ utn

Si,Si+1
)(h

tn+1

Si+1,Si+2
+ htn

Si+1,Si+2
)

−(u
tn+1

Si,Si+1
+ utn

Si,Si+1
)(h

tn+1

Si−1,Si
+ htn

Si−1,Si
) + ...

}

. (6.63)

Now adding (6.62) and (6.63) we have that, the rate of change of total energy

n∑

i=1

hl

[

(u
tn+1

Si,Si+1
)2 − (u

tn+1

Si,Si+1
)2
]

(∆z)2
+

g
[

(h
tn+1

Si,Si+1
)2 − (htn

Si,Si+1
)2
]

2∆z
= 0, (6.64)

which implies that

H
tn+1

Si,Si+1
− Htn

Si,Si+1
= 0,

and hence we prove that the total energy of the discretized system is con-
served in time.

We have also developed the numerical scheme for the nonlinear shallow
water equations with Crank-Nicholson time discretization. The resulting non-
linear algebraic equations are solved iteratively using Newton-Raphson met-
hod. To test the numerical scheme, we first initialize the linear harmonic wave
solution at t = 0 under a low and high amplitudes. Figure 6.4(a) shows the
space-time profile of the water depth h from t = 0 to 1.0. Because of nonlin-
earity, the high amplitude waves start steepening as shown in Figure 6.4(b).
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Figure 6.3: a) Space-time profile of the free surface perturbation obtained
from the numerical scheme of the port-Hamiltonian discretization
of the linear shallow water equations with amplitude A = 0.01,
∆z = 1/101 and ∆t = T/10. b) Plot of the energy H(t) =
∫

Z
1
2 (hlu

2 + gh2dz versus time.
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Figure 6.4: Space-time profile of the water depth obtained from the numeri-
cal scheme of the port-Hamiltonian discretization of the nonlinear
shallow water equations with ∆z = 1/101, ∆t = T/10, amplitude
(a) A = 0.001 and (b) A = 0.25.
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Figure 6.5: Shock wave

6.4 Discussion: Modeling procedure enabling to
capture shocks

Consider the shallow-water equations (2.64). Mathematically, this is a sys-
tem of conservation laws. It represents conservation of mass and conserva-
tion of particle speed u. The velocity conservation law is, however physi-
cally meaningless. System (2.64) is mathematically conservative but physi-
cally non-conservative. We shall see next, that the we can use (2.60) to model
the shallow water equations, provided the solutions are smooth. Assume
that the solution to (2.64) consists of a shock wave of speed Si. The follow-
ing Rankine-Hugoniot conditions then apply for discontinuous solutions of
hyperbolic conservation laws [56]

F (UR) − F (UL) = Si(UR − UL).

In case of the shallow water equations (2.64)

U = [h u]T

F (U) = [
1

2
u2 + gh hu]T .

Consider a shock wave (Figure 6.5) in which the state ahead of the shock
is given by the variables (hR, uR) and the state before the shock is given by
(hL, uL). The speed of the shock wave is given by

S1 = uR +

√

2gh2
L

hL + hR

.

The shallow water equations in this form are often referred to as equations in
a quasi-linear form.
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More generally, the shallow water equations are written in a conservative
form as

∂th + ∂x(hu) = 0

∂t(hu) + ∂x(hu2 +
1

2
gh2) = 0,

which express the physical conservation laws of mass and momentum. In
this case the shock wave has a shock speed (for a detailed analysis of shock
waves we refer to [56])

S2 = uR +

√

1

2
g
(hL + hR)hL

hR

By comparing the two shock speeds S1 and S2 it is found that

S1 ≤ S2

This results from the inequality

0 ≤ (hL − hR)2

Equality of the shock speeds holds only if the shock is trivial, when hL = hR,
that is when the solution is smooth. This clearly says that the formulation of
the shallow water equations as in Equation (2.64) does not admit shocks in a
physical sense. It would be of interest to have a modeling procedure, in the
port-Hamiltonian framework, which admits shocks or discontinuities in the
solution.

One way to look at it could be to view the whole system as composition
of two infinite-dimensional port-Hamiltonian systems with interconnection
constraints in such a way that they take into consideration the physical im-
plications of the shock, namely

hLuL = hRuR

hLu2
L +

1

2
gh2

L = hRu2
R +

1

2
gh2

R.

However, to obtain a general modeling procedure still remains an open issue.
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Conclusions and future research

”How many times can you subtract 7 from 83, and what is left after-
wards? You can subtract it as many times as you want, and it leaves 76
every time.” - Anonymus.

7.1 Conclusions

In this thesis we have analyzed properties of interconnected physical systems,
from various domains, in the framework of port-Hamiltonian systems. It is
shown how this framework can serve as a powerful tool for modeling and
control of complex systems. An important property of port-Hamiltonian sys-
tems is that a power-conserving interconnection of a number of port-Hamil-
tonian systems is again a port-Hamiltonian system and hence this framework
has proven to be well suited for modeling and control of energy-conserving
physical systems using the network approach.

In this chapter we highlight the important results obtained in the thesis and
we give some directions for future research.

7.2 Contributions of the thesis

The contributions of the thesis can be summarized as follows:

• The port-Hamiltonian formulation has been used to model flow of wa-
ter though a canal, modeled by the shallow water equations in a quasi-
linear form. We also presented an extension of the 1-D case which is
interesting from the mathematical point of view. In this case the Stokes-
Dirac structure is non constant as it depends on the energy variables.
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7 Conclusions and future research

• We define the notion of composition of a Dirac structure and a resistive
relation. This composition helps us to study interconnections of port-
Hamiltonian systems with dissipation, both from the finite and infinite-
dimensional domains. We also extend this to the case of infinite-dimen-
sional systems with dissipation.

• The set of achievable Dirac structures in the composition of a given
plant Dirac structure with a to-be-designed controller Dirac structure
has been extended to systems with dissipation. This has also been suc-
cessfully applied to the case of infinite-dimensional systems with dissi-
pation and to mixed finite and infinite-dimensional systems.

• The set of achievable Dirac structures leads to a characterization of the
set of achievable Casimirs of the closed-loop system. The characteri-
zation of the set of achievable Casimirs helps us to study the implica-
tions of Casimirs on control of port-Hamiltonian systems. In the case
of finite-dimensional systems with dissipation we prove, under certain
conditions, that if a function is a Casimir for a given resistive relation it
is a Casimir for all resistive relations.

• The theory of achievable Casimirs was used to study the problem of
stabilization of a given system by generating Casimirs in the extended
state space. It has been shown, with an example of an electromechanical
system, how with the help of new passive outputs we can overcome the
dissipation obstacle and design stabilizing controllers for the system.
The Energy-Casimir method has also been applied towards obtaining
some preliminary results on control of fluid dynamical systems..

• We have applied finite element methods in the port-Hamiltonian frame-
work for spatial discretization of the shallow water equations. The re-
sulting system is a finite-dimensional port-Hamiltonian system which
retains all the properties of its infinite-dimensional analogue. A prelim-
inary extension to the case of a non-constant Stokes-Dirac structure is
also presented.

7.3 Recommendations for future work

7.3.1 Modeling of shallow water equations

As discussed in Section 6.4, the shallow water equations modeled as port-
Hamiltonian systems in Chapter 2 do not admit shocks or discontinuities.
A general modeling procedure, in the port-Hamiltonian framework, which
takes into account discontinuities remains a matter of investigation.
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7.3 Recommendations for future work

7.3.2 Control of canal systems

In Chapter 5, we have presented some preliminary results on control of fluid
dynamical systems of stabilizing flow through a canal (or a series of canals) at
a desired height and zero velocity. In this case, to shape the energy we make
use of one of the conservation laws of the system, that is the mass conserva-
tion. However, if we can use other conserved quantities, say for example the
momentum hu, then we can stabilize the system not only at a desired height
but also at a desired velocity by generating Lyapunov functions of the form

V =
1

2
[h(u − ū)2 + g(h − h̄)2]

Such type of Lyapunov functions have also been derived in [8] and to arrive
at such functions from the Hamiltonian point of view remains an open issue.

7.3.3 Interconnections in the mixed case

In Section 3.3.1 we have presented an extension of interconnections of mixed
finite and infinite-dimensional systems, by presenting an example for the 2-
D case and then generalized it to an infinite-dimensional system with an n-
dimensional spatial domain. The interconnection constraints (3.34) hold for
classes of systems where one of the boundary variables is a zero-form (which
is the same as a function that takes value at points). Examples of such a case
are the 3-D fluid flow, the n-D wave equation etc. This is however not the case
when none of the boundary variables is a function, as in the case of Maxwell’s
equations where the boundary variables are the electric field intensity and the
magnetic field intensity both being one-forms. To interconnect systems of this
sort through the boundary with finite-dimensional systems remains an open
issue.

7.3.4 Electromechanical systems

A possible way to overcome the dissipation obstacle is to generate new pas-
sive outputs which enables swapping of the damping. An example of stabi-
lizing an electromechanical system with constant inputs, resulting in forced
a equilibrium, was presented in Section 5.1.2. This method is not applicable
to a general class of electromechanical systems and the case of the capacitor
microphone could be treated as a special case. Based on the power shaping
techniques introduced in [37] and successfully applied to electrical circuits,
one might naturally be tempted to apply such techniques also to electrome-
chanical systems. An important point to observe in the case of electrome-
chanical systems, unlike electrical circuits, is that in general the Hamiltonian
cannot be split into electrical and mechanical parts. To explore new passivity
properties, which would help in solving control problems, for a general class
of electromechanical systems remains an open issue.
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7 Conclusions and future research

7.3.5 Spatial discretization of infinite-dimensional syst ems

We have presented in Chapter 6 some preliminary results towards the spatial
discretization of the shallow water equations. One of the issues which remain
open is to explicitly relate the conserved quantities in the finite-dimensional
case to the infinite-dimensional case for the huv formulation. The extension
to the higher dimensional spatial domain case is certainly a matter of inves-
tigation. In the numerical results, it has been seen that various explicit time-
stepping schemes have proven to be numerically unstable. Investigation on
various time-stepping schemes and their stability analysis remains an open
issue.
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